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Abstract – Passive acoustic monitoring for bats has become a common method to determine species 
presence and activity levels. However, current acoustic methods are ineffective for monitoring spe-
cies abundance at large summer colonies. We used synchronized acoustic and thermal-imaging data 
collected at 6 colonies of Myotis grisescens (Gray Bats) and found a significant positive relationship 
between acoustic energy and number of emerging bats. Our findings reinforce that acoustics have the 
potential to estimate population sizes of summer bat colonies. Additionally, we examined ultrasonic 
amplitude variance across 19 AudioMoth devices at 5 different gain settings and found significant dif-
ferences among devices and settings. Further exploration into device variability and bat behavior are 
necessary to develop a robust model of population estimates using acoustic energy. 

Introduction

	 Across the globe, bats are threatened by habitat loss, bushmeat trade, diseases such as 
white-nose syndrome, mortality from wind turbines, and climate change (Boyles et al. 2011, 
Festa et al. 2023, Frick et al. 2020, Furey and Racey 2016, Mickleburgh et al. 2002). The 
International Union for Conservation of Nature characterizes 80% of bat species as need-
ing conservation action or research attention to assess population status (Frick et al. 2020). 
However, managers lack the reliable population data needed to inform conservation and 
management decisions for many species (Frick et al. 2020). For population estimation at 
roosts, conventional censusing methods such as capture and winter counts in hibernacula 
can be inefficient, time intensive, cost prohibitive, or invasive to the targeted species (Frick 
et al. 2020, Furey and Racey 2016, Walters et al. 2013).
	 An alternative to conventional censusing methods is passive acoustic monitoring (PAM), 
which has primarily been used to detect and monitor bat populations across landscapes (Sugai 
et al. 2019). PAM techniques can be used to infer bat abundance (Riedle and Matlack 2013), 
distribution (Krauel and LeBuhn 2016, McCracken et al. 2018), habitat use (Blanco and 
Garrie 2020, Russo and Jones 2003), activity (Adams and Fenton 2017, Kitzes and Meren-
lender 2014), and behavior (Jespersen et al. 2022, Schwartz et al. 2007). Despite progress in 
developing PAM methods for monitoring bats on the landscape, reliable PAM techniques for 
censusing and monitoring bats in large roosts or caves lag behind. In temperate zones, many 
species use caves for part of their annual life cycle, with caves often playing crucial roles 
during hibernation and maternity periods (Furey and Racey 2016). Reliable and efficient tech-
niques are essential to monitor the abundance of cave-dwelling bats and assess their response 
to management practices, development activities (e.g., prescribed burns, installation of gates 
on cave openings, wind-energy installations near colonies), and introduced diseases. 
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	 A common approach to census large summer colonies is to conduct exit counts during 
evening emergence, which is typically obtained via manual counts or the use of near-
infrared or thermal imaging (Loeb et al. 2015). Exit counts can be complicated by dense 
vegetation, low light conditions, and multiple cave openings (Ammerman et al. 2009). 
Thermal imaging, although costly ($5000–$10,000 USD), has become the common method 
for censusing bats in low-light environments (Cilulko et al. 2013, Hristov et al. 2008, Loeb 
et al. 2015). Although automated counting software exists (Bentley et al. 2023, Corcoran et 
al. 2021), the adoption of thermal imaging can be limited by the training required to image 
emergences and analyze resulting videos (Ahlberg et al. 2024). Near-infrared (NIR) imag-
ing presents challenges because NIR lights need to be placed within a few meters of emerg-
ing bats, which is impractical for caves with standing water or tall entrances. Furthermore, 
NIR lighting can create shadows, complicating counts (V. Kuczynska, US Fish and Wildlife 
Service, Missouri Ecological Services Field Office, MO, Pers. Comm.).
	 Motivated by the recent availability of affordable acoustic recording units, like the Au-
dioMoth (Hill et al. 2018), and the need for a low-cost automated method to estimate the 
number of bats emerging from roosts with large populations, we aimed to estimate popula-
tion sizes using acoustic energy. Prior work demonstrated that acoustic energy could esti-
mate population size for large colonies (Kloepper et al. 2016). However, that study focused 
on a single species, Tadarida brasiliensis I. Geoffroy (Brazilian Free-tailed Bat), at a single 
location, leaving its suitability for other species and locations uncertain. 
	 Here, we evaluate the use of automated PAM methods to monitor summer roost popula-
tions of Myotis grisescens Howell (Gray Bat). Gray Bats, which have been on the federal list 
of endangered species since 1976 (US Fish and Wildlife Service 1982), remain vulnerable to 
land-use and climate change, despite recovering from historically low population levels (Festa 
et al. 2023, Frick et al. 2020, LaVal et al. 1977). The US Fish and Wildlife Service (2024) 
estimates that 98% of the 5 million Gray Bats hibernate in only 15 caves and that these over-
wintering bats disperse to at least 95 summer roosts, many of which lack population estimates 
(V. Kuczynska, Pers. Comm.). This lack of data makes it difficult to assign biological signifi-
cance and prioritize conservation actions to sites (V. Kuczynska, Pers. Comm.). To address 
this problem, we modeled the relationship between acoustic energy and emergence density 
at multiple maternity caves of Gray Bats. We hypothesized that acoustic energy, measured as 
root mean square (RMS) power, will increase with number of bats emerging. 

Field-site description
	 Data were collected at 6 limestone caves hosting large maternity colonies of Gray Bats 
in Missouri, USA (Fig. 1). These caves are used exclusively by Gray Bats for roosting dur-
ing the summer (V. Kuczynska, Pers. Comm.). At all sites except Tumbling Creek, data were 
obtained either inside or outside the caves. At Tumbling Creek, recordings were made both 
inside and outside the cave. 
	 Outside sites (Mauss, Tumbling Creek-Outside, and Mary Lawson) often had vegetation 
near the openings where bats emerged. At Tumbling Creek-Outside, bats exited through a 
chute gate ~3.5 m above the ground. The opening within the chute is ~10 m wide and 1.5 
m tall. During the May surveys, water, with a water depth of ~0.5 m, flowed from inside 
the cave, beneath the gate and directly below where the bats were recorded inside the cave. 
Mauss Cave has a gated entrance ~8 m wide and 5 m tall at its peak, narrowing to ~1 m 
at the sides. Bats primarily emerged through a 1-m gap between the gate and cave ceiling. 
Mary Lawson’s cave opening also has a gate that is ~7.5 m wide and 6 m tall. Bats mostly 
exited through a 1.5-m gap between the top of the gate and the cave ceiling.
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	 Inside sites (Rocheport, Tumbling Creek-Inside, Devil’s Icebox, and Bat Cave Oregon) 
featured cave formations and muddy ground. At Rocheport, recordings were conducted in-
side a large hall ~6 m tall and 20 m wide. At all sites except Bat Cave Oregon and Devil’s 
Icebox, bats emerged through a single opening. At Bat Cave Oregon and Devil’s Icebox, 
2 potential emergence sites were present, but recordings were conducted inside the cave 
where bats were exiting in a single stream before the passage split. The hall where record-
ings were made at Bat Cave Oregon was ~3.5 m high and 5.5 m wide, while the chamber at 
Devil’s Icebox was ~1.8 m tall and 3 m wide.

Methods

Data collection
	 We collected synchronized ultrasonic acoustic and thermal video data of emerging Gray 
Bats on 27 occasions from May 2022 to July 2023, including simultaneous inside and out-
side recordings at 1 location (Tumbling Creek Cave) for 2 emergences. Ultrasonic acoustic 
data were recorded using AudioMoths (v. 1.2.0, Open Acoustic Devices, Southampton, 
UK), which were housed in polycarbonate weatherproof cases (AudioMoth IPX, Open 
Acoustic Devices), which were acquired through the GroupGets crowdfunding platform 
(https://groupgets.com). AudioMoths were selected due to their low cost ($150 USD for 
the device and weatherproof case, but electronic designs are freely available). In addition, 
we chose AudioMoths because of their rugged housing, ability to record continuously, and 
because we were able to adjust gain values lower than those of commercially available bat 
recorders such as Song Meter (Wildlife Acoustics, Maynard, MA) or Ranger (Titley Scien-
tific, Columbia, MO). Lowering the gain helps minimize clipping, which is a distortion that 
occurs when the recorded audio exceeds the maximum amplitude of the recording system; 
this distortion was a common issue at sites where bats flew close to our acoustic recorders.

 
Figure 1. General location of the 6 study sites across Missouri, USA.



Journal of North American Bat Research
V.M. Eddington, S. Ahlberg, V. Kuczynska, E.R. White, and L.N. Kloepper

2025 Special Issue 1

62

	 In 2022, all devices were programmed with the standard AudioMoth firmware (v. 1.8.0). 
For 2023, we programmed devices with custom low-gain firmware designed by Open Acous-
tic Devices specifically for this project, which allowed a further decrease in gain and reduction 
in clipping (firmware available upon request from the author). Low-gain range was enabled 
for devices programmed with the custom firmware. All AudioMoths were programmed with a 
sampling rate of 250 kHz, recording duration of 595 seconds and sleep duration of 5 seconds. 
	 Thermal video was captured with a thermal-imaging monocular (Scion OTM266, Tele-
dyne FLIR, Wilsonville, OR) at 30 frames per second and a resolution of 640 by 480 pixels. 
Data collection typically began within 30 minutes of sunset, when bats became active near 
the roost opening, until the rate of emergence decreased to <5 bats per each minute for 5 
minutes, with recording duration lasting between 25 and 80 minutes across the dataset. 
Temperature (°C) and relative humidity (%) were recorded at the start and end of data col-
lection for each emergence by a datalogger (HOBO MX1101, Onset Computer Corporation, 
Bourne, MA). Starting and ending measurements were averaged for analysis, except on 
nights with only 1 data point (i.e., either start or end measurement). There were 3 additional 
occasions (Bat Cave Oregon on 8 June 2022, and Tumbling Creek on 13 July 2022 and 18 
May 2023) when the environmental data were lost during data transfer or were not collected 
due to equipment malfunction. 

Acoustic data acquisition
	 We extracted all acoustic data in RStudio (R Core Team 2021), using the seewave (Sueur 
et al. 2008) and tuneR (Borg 2016) packages (R script available upon request from the author). 
These packages convert sample values to 16-bit linear pulse-code modulation (PCM) format 
(−32,768 and 32,768), which we standardized to double floating-point values (−1 to 1), to 
be consistent with approaches used in other bioacoustics analysis software, including MAT-
LAB (MathWorks, Natick, MA) and Raven Pro (Cornell Lab of Ornithology, Ithaca, NY). A 
first-order Butterworth bandpass filter was applied around 35 and 70 kHz, encompassing the 
frequency range of the fundamental harmonic of Gray Bat calls (Decher and Choate 1995). 
	 Because AudioMoths are not calibrated by the manufacturer, we cannot calculate ampli-
tude values in sound pressure level, which is typically used to quantify amplitude (Lynch 
et al. 2011; Shannon et al. 2016). Instead, we used a process to determine relative RMS 
power of the signal values, which are comparable to the absolute value of the waveform. To 
calculate RMS power (relative dB) per second, we converted RMS signal power values to 
RMS relative power in relative decibels, using the following formula:

 								                ,

where RMSrel = the RMS power measurement in relative decibel units, RMSact = the re-
corded signal RMS power measurement, and RMSmax = the RMS power of the maximum 
signal energy measurement possible (i.e., a 1-second simulated floating-point file consist-
ing of alternating −1 and +1 values). Additionally, to compare changes in acoustic energy 
across nights at Mary Lawson, we normalized our acoustic data relative to the noise floor 
(background noise) by adding the absolute value of the quietest signal to all RMSrel values 
for each night. This measurement is termed normalized RMSrel.

Ultrasonic amplitude variance testing and gain-offset calculations
	 We performed a series of simple tests to determine how gain affects ultrasonic sensitiv-
ity among devices (see Supplemental Fig. 1 in Supplemental File, available online at http://
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www.eaglehill.us/NABRonline/suppl-files/nabr-010i-s1-Eddington). We tested 19 Audio-
Moths (9 new devices and 10 devices that had undergone varying levels of field use) using 
a low-cost ultrasonic calibrator ($199; Wildlife Acoustics, Maynard, MA), which emits 
square-wave pulses at 40 kHz. AudioMoths were turned on and placed in an assigned case 
45 minutes prior to testing to allow the pressure within the polycarbonate case to equalize. 
The calibrator and microphones were each attached to a tripod 1 m above ground, 4 m apart, 
and facing each other. Each AudioMoth recorded ~20 chirps from the calibrator for 5 unique 
combinations of firmware and gain. These combinations were standard firmware with gain 
set to low and medium low, and custom firmware with gain set to medium, medium high, 
and high. We manually extracted 20 milliseconds of each pulse and extracted the RMSrel in 
RStudio (R Core Team 2021). We then calculated the mean RMSrel across devices for each 
combination of gain setting and firmware.
	 Each combination of gain setting and firmware produces different mean RMSrel values 
(Fig. 2a, Supplemental Table 1, Supplemental Figs. 2–6), and we used different combina-
tions of settings in our dataset; hence, we performed a gain-offset on our acoustic data. To 
do so, we calculated the difference between our selected baseline of the standard firmware 
at low-gain setting and mean RMSrel for all combinations of firmware and gain. We then 
transformed all our field measurements with the appropriate conversion. 
	 Additionally, we compared 2 new AudioMoths that demonstrated high inter-unit vari-
ability in initial trials. We compared the 2 devices when housed in the polycarbonate cases 
and when unhoused, to determine whether the cases were contributing to variability.
 

 

Figure 2. (A) Differences in mean RMSrel across firmware and gain settings for all AudioMoths from 
the analysis of ultrasonic amplitude variance. Groups with different letters differed significantly (P 
< 0.05). (B) Differences in RMSrel across 19 AudioMoths in the ultrasonic amplitude variance trial 
using standard firmware, low-gain. Dashed gray line represents the mean RMSrel. (C) Significant dif-
ferences in RMSrel for 2 new AudioMoths, when housed in polycarbonate cases versus unhoused. One 
asterisk indicates P = 0.03, whereas 2 asterisks indicate P < 0.0001. In all panels, bold line indicates 
the median, boxes represent the interquartile range, whiskers represent the first and fourth quartiles, 
and dots represent statistical outliers.
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Table 1. Summary of locations, dates, estimated population size of Gray Bats from thermal videos, 
temperature (°C), relative humidity (%), firmware, and gain setting. The last column indicates the 
coefficient of determination (R2) for the relationship between RMSrel and estimates of emerging bats 
using thermal video.

Location Date Estimated 
population size

Temp
(°C)

Rel. 
humidity (%)

Firmware Gain 
setting

R2

Mauss 13 June 
2022

27,539 21.9 88.5 Standard Low 0.62

Mauss 23 July 
2022

20,270 24.7 68.5 Standard Low 0.58

Mauss 9 August 
2022

4184 22.6 83.5 Standard Low 0.34

Mauss 23 September 
2022

27,056 19 84 Standard Low-
Med

0.63

Mauss 24 July 
2023

2615 23.7 90.4 Custom Med-
High

0.10

Bat Cave 
Oregon

7 June 
2022

8166 21 93.3 Standard Low 0.87

Bat Cave 
Oregon

8 June 
2022

21,877 NA NA Standard Low 0.71

Tumbling 
Creek-Inside

20 June 
2022

21,333 18.1 72 Standard Low-
Med

0.58

Tumbling 
Creek-Inside

13 July 
2022

24,818 NA NA Standard Low-
Med

0.72

Tumbling 
Creek-Inside

18 May 
2023

15,339 NA NA Custom Med 0.37

Tumbling 
Creek-Inside

1 June 
2023

12,056 18.4 78.5 Custom  Med 0.07

Tumbling 
Creek-Inside

23 June 
2023

12,923 16.9 88.7 Custom  Med 0.04

Tumbling 
Creek-Inside

20 July 
2023

27,779 19 95.1 Custom Med 0.31

Tumbling 
Creek-Inside

23 July 
2023

35,684 18.1 93.7 Custom Med 0.62

Tumbling 
Creek-Outside

17 May 
2023

16,297 17.4 87.1 Custom Med 0.15

Tumbling 
Creek-Outside

18 May 
2023

13,687 NA NA Custom Med 0.41

Tumbling 
Creek-Outside

17 July 
2023

37,872 22.2 93.1 Custom Med 0.006



Journal of North American Bat Research
V.M. Eddington, S. Ahlberg, V. Kuczynska, E.R. White, and L.N. Kloepper

2025 Special Issue 1

65

Thermal data acquisition
	 We analyzed thermal videos in BatCount (Bentley et al. 2023) to obtain a frame-by-frame 
count of individuals as they passed over the acoustic recording device. We summed the frame-
by-frame counts over 30 frames to produce a new variable that we termed “bats-per-second”. 
BatCount provided an estimate of population size for each emergence by summing the indi-
vidual bats passing through the region of interest over the recording duration (Table 1).

Statistical analyses
	 All statistical analyses were performed in R (R Core Team 2021). For our primary mod-
el, assessing the relationship between bats-per-second and RMSrel, we used a generalized 

Location Date Estimated 
population size

Temp
(°C)

Rel. 
humidity (%)

Firmware Gain 
setting

R2

Tumbling 
Creek-Outside

20 July 
2023

25,723 25.1 99.6 Custom Med 0.43

Rocheport 22 May 
2022

21,586 18.3 74 Standard Low-
Med

0.91

Rocheport 5 August 
2022

32,825 24.1 64.5 Standard Low-
Med

0.63

Rocheport 4 September 
2022

37,721 19.9 77.5 Standard Low 0.77

Rocheport 5 September 
2022

63,963 20.2 80 Standard Low 0.63

Rocheport 9 September 
2022

44,720 22 80 Standard Low 0.76

Mary Lawson 25 July
 2023

11,384 23.3 75.6 Custom Med-
High

0.41

Mary Lawson 28 July
 2023

7141 23.5 76.5 Custom Med-
High

0.47

Mary Lawson 29 July 
2023

5723 21.7 89.5 Custom Med-
High

0.44

Mary Lawson 30 July 
2023

9823 25.6 83.4 Custom Med-
High

0.23

Devil’s Icebox 29 July 
2022

4337 14.3 74 Standard Low 0.46

Devil’s Icebox 6 August 
2022

8872 15.4 79.5 Standard Low-
Med

0.69

Table 1. Summary of locations, dates, estimated population size of Gray Bats from thermal videos, 
temperature (°C), relative humidity (%), firmware, and gain setting. The last column indicates the 
coefficient of determination (R2) for the relationship between RMSrel and estimates of emerging bats 
using thermal video.
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linear mixed-effects model with a negative binomial error term and several environmental 
covariates. We used bats-per-second as the response variable and RMSrel, location, date, 
temperature, and humidity as the predictor variables. RMSrel, temperature, and humidity 
were included as fixed effects, while cave and date were each included as a random effect 
(for details of statistical test see Supplemental File).
	 For the ultrasonic amplitude variance analysis, a series of 1-way ANOVAs were used to 
assess statistical differences in sensitivity across combinations of firmware and gain setting 
(for details of statistical tests see Supplemental File), as well as individual AudioMoths 
within each group (i.e., 19 AudioMoths each tested with 5 combinations of firmware and 
gain settings). A Tukey’s post-hoc test was used to assess pairwise variation in RMSrel 
among combinations of firmware and gain settings. Lastly, to assess statistical differences 
in the housed versus unhoused AudioMoths, we performed a 2-way ANOVA.
	 A simple linear regression was used to assess the relationships between overall popu-
lation estimate and R2 values from the bats-per-second to RMSrel model outputs, and be-
tween total emergence duration and R2 values from the bats-per-second to RMSrel model 
outputs. Additionally, a simple linear regression was used to examine the relationship 
between bats-per-second and total normalized RMSrel across single nights of recording at 
Mary Lawson.

Results

Ultrasonic amplitude variance results
	 We found a mean difference of 7.3 dB between the most sensitive (standard firmware, 
low-medium gain) and least sensitive (custom low-gain firmware, medium gain) gain set-
tings (Fig. 2A; supporting statistical information for ultrasonic amplitude variance testing 
is in Supplemental File). Sensitivity differences were significant (P < 0.001) among most 
firmware and gain settings, except between custom low-gain firmware with high gain set-
ting and standard firmware with low-medium gain setting (P = 0.051), and custom low-gain 
firmware with medium-high gain setting and standard firmware with low-gain setting (P = 
0.13; Fig. 2A; Supplemental Tables 2–3; Supplemental File). We found significant sensitivity 
differences (P < 0.0001) among individual AudioMoths within each firmware and gain com-
bination (Fig. 2B; Supplemental Tables 4–8; Supplemental Figs. 2–5; Supplemental File). 
Follow-up tests comparing 2 new devices showed that polycarbonate cases significantly af-
fected device sensitivity (P = 0.001; Fig. 2C; Supplemental Table 9; Supplemental File).

Model results
	 Across the 6 locations, RMSrel increased significantly with the number of bats-per-
second (P < 0.001; Fig. 3; Supplemental Table 10; for model details see Supplemental File), 
with R2 ranging from 0.006 to 0.91 across sites and population estimates ranging between 
2615 and 63,963 individuals (Table 1). For each increase of 1 relative dB, the model pre-
dicted a 17.6% increase in bats-per-second. Temperature and humidity had no significant 
effects (P > 0.05). 
	 Emergence profiles differed among nights at the same site for some populations, includ-
ing Mauss Cave, Bat Cave Oregon, Tumbling Creek-Inside, and Tumbling Creek-Outside 
(Fig. 4). There was a general trend of shorter, denser emergence periods producing lower 
RMSrel, compared to evenings with longer, less dense emergence periods. For sites with 
similar emergence patterns across consecutive nights of recording, such as Mary Lawson, 
the relationship between RMSrel and bats-per-second remained constant (Figs. 4 and 5). 
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	 Overall, we found that population size of a roost did not significantly affect the bat-
acoustic relationship (P = 0.09; r2 = 0.1; Fig. 6) nor did emergence duration (P = 0.91; r2 

= 0.0004; Fig. 7). However, this was site-specific. At Mauss Cave, for example, on nights 
when emergence totaled more than 20,000 individuals, R2 values ranged from 0.58 to 0.63, 
while on nights with less than 5000 individuals, R2 values ranged from 0.10 to 0.34 (Table 
1). Larger populations did not always yield higher R2 values. At Bat Cave Oregon R2 values 
of the model of bats-per-second to RMSrel remained high across 2 consecutive nights (Table 
1; Fig. 5), despite high variance in emergence size (8166 individuals the first night; 21,877 
the second night; Fig. 4). Interestingly, emergence density was higher for the night with low 
population size, with an average of 84 bats-per-second and lower for the night with higher 
population size, with a mean of 26.2 bats-per-second.

Discussion

	 Overall, we found that acoustic energy increased with higher emergence density. In ad-
dition, for a given location, the rate at which acoustic energy changed with bat density was 
consistent when emergence profiles were similar. This relationship, however, varied across 
nights with different emergence behaviors, highlighting the complexity of factors that may 
influence bat emergence, such as weather, phenology, and reproductive state (Frick et al. 
2012). Our findings build on prior work linking acoustic energy to emergence density in 
T. brasiliensis (Kloepper et al. 2016) and suggest that, on a coarse level, acoustic-energy 
metrics may help document changes in phenology and monitor relative population trends 
throughout a season. We observed variation in the relationship between RMSrel and bats-per-
second across different nights at some locations, hence averaging across multiple nights may 
improve the accuracy of population estimates, as reported in Kloepper et al. (2016). 
	 AudioMoths are rapidly growing in popularity due largely to their low cost and user-
friendly interface. For this study, we found it necessary to collect data with different gain 
settings across and within sites to avoid clipping in our acoustic recordings. Although ap-
plying a gain-offset enabled more accurate comparisons across surveys, the results of the 
AudioMoth ultrasonic amplitude variance tests reveal a concerning confounding variable. 

 

Figure 3. Relationship between acoustic energy (RMSrel) and thermal 
video determination of bats-per-second for 27 emergences of Gray Bats 
at roosts in Missouri, USA. The curves represent the line of best fit from 
a generalized linear model with a negative binomial error term. The 
colors represent different sites, while each line is a unique emergence. 
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Given the significant differences in sensitivity across both new and used devices, our findings 
highlight the risk of using uncalibrated devices for amplitude measurements or to determine 
detection range. Our testing of housed and unhoused AudioMoth devices suggests that varia-
tion is likely driven by the housing rather than the recording devices themselves. This finding 
aligns with previous studies that have identified AudioMoth housing as the primary cause for 
variability among devices (Lapp et al. 2023, Osborne et al. 2023). However, this variation 
remains problematic as these units require weatherproof housing for use in the field. The 
variation in sensitivity for ultrasonic frequencies may be due to the placement of devices 
within housing units, which could result in differences in recorded amplitudes if the record-
ing unit is not consistently aligned with the acoustic membrane. Further testing of housed 
and unhoused devices, as well as repeated testing of individual units, will help identify the 
mechanism driving the observed variation and reveal whether improved housing could lead 
to more consistent results. Despite the complex variation in sensitivity across devices in our 
study, we still found an overall significant relationship between RMSrel and bats-per-second, 
and this relationship likely will strengthen once device variation is accounted for. 
	 Although comparing data across sites in our study was challenging, we found promising 
evidence for the acoustic censusing methods, after accounting for differences among indi-

Figure 4. Emergence profiles, bats-per-second over time (s), for each site and emergence from the 
video counts (right side). 
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vidual AudioMoths. At Mary Lawson we collected 4 nights of data within a single week us-
ing the same AudioMoth, with 3 of those 4 emergences recorded on consecutive days (Figs. 
4–5). We found a positive linear relationship in the total number of bats versus total RMSrel 
(Fig. 8). Calculating the slope of the trend line for changes in acoustic energy over multiple 
consecutive nights minimized the impact of nightly variation in emergence conditions. Thus, 
monitoring relative changes in acoustic energy at a site, as a proxy for relative population 
size, may offer valuable insights into site-specific phenology and indicate peak occupancy. 
These acoustic population trends can help managers determine ideal censusing periods with-
out the need for expensive ($1000+ USD) bat detectors. However, we recommend that users 
ground-truth these acoustic recordings with thermal or manual counts for at least 1 night at 
each location, until the acoustic censusing method is more thoroughly validated.
	 In addition to understanding site-specific relationships affecting RMSrel and bats-
per-second, further investigation is needed to understand how temporal variations in 
emergence density and acoustic behavior influence this relationship. Our data suggest 

Figure 5. Thermal video estimates of bats-per-second (log10) versus RMSrel for each night of emer-
gence. The horizontal lines below 1 bat per second (log10) is an artifact of the logarithmic transforma-
tion of low-value integers. Overlap in the points for Mary Lawson makes it difficult to distinguish the 
orange and green points.
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Figure 6. Population esti-
mates of Gray Bat colonies 
from thermal videos versus 
the coefficient of determi-
nation (R2; Table 1) for the 
relationship between bats-
per-second and RMSrel, for 
each night of emergence. 
Gray shading represents the 
standard error.

Figure 7. Total duration of 
emergence versus the coef-
ficient of determination (R2; 
Table 1) for the relationship 
between bats-per-second and 
RMSrel, for each night of 
emergence. Gray shading 
represents the standard error.

Figure 8. The relationship 
between the total number of 
bats-per-second for a single 
night and the total normal-
ized RMSrel for that night at 
Mary Lawson (r2 = 0.56, P 
= 0.29). 
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decreased overall amplitude during high-density emergences, such as those at Bat Cave 
Oregon (Fig. 5). While these phenomena may be due to variation among recording devices, 
some bats also go silent at high densities (Chiu et al. 2008). Continued research into the 
vocal adaptations of bats in groups will be crucial to understanding the impact of high-
density emergences on the effectiveness of acoustic censusing methods. Variation in the 
relationship between amplitude and bats-per-second may also result from changes in colony 
demographics across the season. In May emergences primarily consist of adults, while by 
late July emergences likely contain a mix of adults and newly volant juveniles (Brack et 
al. 2021). Gray Bats typically become volant at 21–33 days of age (US Fish and Wildlife 
Service 2024). Although vocal ontogeny in Gray Bats has not been documented, Eptesicus 
fuscus (Palisot de Beauvois, Big Brown Bat) shows differences in vocal characteristics be-
tween pups and adults up to 28 days after birth (Moss 1988, Moss et al. 1997). Therefore, 
juvenile Gray Bats may exhibit a different relationship between RMSrel and bats-per-second, 
compared to adults. Further investigation into how amplitude and density trends vary over 
time and across sites will be crucial to the development of a robust model that can estimate 
population size of cave-dwelling bats from acoustic energy. 
	 In general, the results of this study suggest that using acoustic energy to predict trends 
in bat emergence counts is best suited for emergences of moderate density (~50–150 bats-
per-second). However, these results may be specific to Gray Bats, as Kloepper et al. (2016) 
found the method was most effective for high-density emergences of T. brasiliensis. Similar 
to Kloepper et al. (2016), we noted poorer fit at low densities, although it was not statistical-
ly significant (Fig. 6). At low densities, RMSact is more likely influenced by non-emerging 
bats flying in the recording area, due to the low noise floor of low-density emergences. Use 
of acoustic energy to predict emergence counts relies on identifying a relationship between 
individuals within view of the thermal camera and the echolocation calls they produce dur-
ing that time. Ultrasonic noise from individuals within range of the acoustic recorder, but 
not actively emerging, cannot be distinguished from emerging bats. This issue is particu-
larly problematic for low-density emergences, during which a few nearby individuals could 
disproportionately affect the RMSact. 
	 For biologists interested in monitoring a single location over an extended period, there 
are steps to improve the precision of relative population estimates. First, averaging acous-
tic energy across multiple nights will result in better population estimates (Kloepper et al. 
2016). Second, using a designated AudioMoth with an assigned polycarbonate case de-
ployed at a fixed location for each site may help reduce variation in RMSrel attributed to the 
case itself. Another option is to use a more expensive recording units such as Song Meter 
(Wildlife Acoustics, Maynard, MA) or Anabat (Titley Scientific, Columbia, MO). However, 
this introduces the risk of signals clipping. Most commercial recording units are designed to 
detect bats over large distances, incorporating electronic amplifiers and user-adjustable gain 
settings. In areas where bats pass close to the microphone, even no gain (zero amplification) 
can result in signals that exceed the recorder’s capacity, causing distortion of the signal 
(Metcalf et al. 2023), although physical modifications to the microphones (e.g., attenuating 
foam) can help reduce clipping (Gentry-Grace 1998).
	 Regardless of the recording unit, we strongly recommend conducting calibration mea-
surements at the beginning of and periodically throughout the study. Although true acoustic 
calibration requires specialized, expensive microphones and testing chambers, we devel-
oped a low-cost alternative to assess variation in response to ultrasonic stimuli across acous-
tic recorders (Supplemental File). The method provides an affordable option for researchers 
with limited resources to calibrate sensors. 
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	 Although acoustic methods will likely never match the accuracy of video counting, 
monitoring trends in acoustic activity over time could reveal important phenological events, 
such as peak occupancy, which could help determine optimal timing of thermal-censusing 
efforts. Understanding the relationship between emergence density and acoustic energy is 
fundamental for evaluating the efficacy of this method for monitoring population trends of 
colonial bats. Although we found no significant effect of temperature or humidity, these 
factors affect sound propagation (Goerlitz 2018) and bat behavior (Koch et al. 2023) and 
should, therefore, continue to be used as covariates in future studies. In conclusion, our 
results demonstrate the potential for acoustic-energy measurements to monitor trends in the 
number of bats emerging from a roost. However, for this method to infer population trends 
reliably across roosts, a better understanding of variation in ultrasonic performance across 
acoustic sensors is needed. Furthermore, validating these methods with additional species 
would advance the integration of acoustic estimates of the number of bats emerging from a 
roost into larger-scale monitoring programs such as NABat (Loeb et al. 2015).
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