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Evaluating Methods for Emergence Counts at Bat Roosts: A 
Pilot Study Comparing Drone-acquired Thermal Imagery, 

Acoustic Estimates, and Visual Observations

Karah Jaffe1, 2, *, Richard Carter2 and Aaron J. Corcoran3

Abstract - Evaluating methods for monitoring wildlife populations is essential for conservation. Here, 
we conduct an initial assessment of the precision of 3 methods deployed concurrently for surveying 
bats emerging from roosts: human visual observation, drone-acquired thermal imagery, and sound-
pressure levels of ultrasonic recordings. We conducted 3 surveys at a roost of Myotis grisescens (Gray 
Bats) and 10 surveys at a roost of Eptesicus fuscus (Big Brown Bats). Fitting linear and exponential 
models to the data resulted in strong correlations between visual counts and both drone-acquired (r2 
= 0.83–0.91) and acoustic (0.51–0.90) estimates. Nightly counts based on thermal imaging differed 
from visual counts by a median of 17.5% and 32% at our 2 study sites (range: 1.6–263%), while 
nightly acoustic estimates differed from visual counts by a median of 4.7% and 15.1% (3.5–144%). 
We discuss the limitations and advantages of each method and conclude that all can be useful for sur-
veying bats, but each has its own inherent constraints. When possible, we recommend using multiple 
methods concurrently to increase the reliability of count estimates. 

Introduction

	 Monitoring population sizes over time is integral for effective wildlife management. 
However, measuring wildlife populations with sufficient accuracy is often challenging 
(Vallecillo et al. 2021). Various methods have been developed to establish baseline 
population estimates and evaluate changes over time (Davis and Winstead 1980). With 
a range of methods available for monitoring populations, exploring the feasibility of 
integrating new technologies with traditional approaches is essential for enhancing and 
refining current methodologies. 
	 Traditional approaches to counting colonies of bats include visual counts of bats in roosts, 
visual emergence counts, recorded imagery, and mark-recapture methods, all of which are 
then used to infer broader population-level trends (Kunz et al. 2009). Visual emergence 
counts have been used widely to estimate bat populations at tree cavities, caves, cave-like 
features, and rock crevices (Betke et al 2008, Speakman et al. 1992). This approach remains a 
primary method for surveying bats, such as with the North American Bat Monitoring Program 
(Loeb et al. 2015). In visual surveys, observers are stationed underneath an estimated flight 
pathway to view bats silhouetted against the sky. However, visual counts have some widely 
recognized limitations, such as being unreliable during high-density emergences (Betke et al. 
2008, Hristov et al. 2008, McCracken 2003). Additionally, visual counts are considered labor-
intensive, often requiring multiple observers at a single location.
	 The application of thermal imagery has become increasingly prevalent in wildlife 
detection and population estimation (Cilulko et al. 2013, Lethbridge et al. 2019, Sabol 
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and Hudson 1995). In the past 3 decades, thermal imaging has been employed to record 
and count bats during emergence (Betke et al. 2008; Elliott et al. 2005, 2011; Frank et al. 
2003; Sabol and Hudson 1995). Thermal imagery has typically been obtained with cameras 
positioned at fixed locations on the ground. Drones, also referred to as “unmanned aircraft 
systems,” offer the advantage of capturing imagery from a top-down perspective and 
allowing real-time adjustments to capture bats that emerge unexpectedly from different 
locations. This approach ensures a more comprehensive recording of the entire emergence, 
accounting for unpredictability in individual flight paths, which ground observers (and 
ground-based cameras) may miss. The merits of employing thermal imaging with drones 
for wildlife surveys are considerable, providing biologists with a valuable tool for data 
collection (Christie et al. 2016, Hodgson et al. 2018, Israel 2011, McCarthy et al. 2023, 
Mulero-Pázmány et al. 2014, Sardà-Palomera et al. 2012, Seymour et al. 2017, Whitworth et 
al. 2022). Recent studies have also highlighted the utility of drones integrated with acoustic 
detectors for recording bat echolocation, further emphasizing the versatility of drones in 
wildlife research (Jespersen et al. 2022, Kloepper and Kinniry 2018, Michez et al. 2021).
	 Despite technological advancements, the use of thermal imaging with drones presents 
challenges. Drone operation requires trained personnel, and legal and safety considerations 
must be addressed, including complying with regulations and ensuring the safe operation of 
drones in various environments. Additionally, the analysis of thermal imagery can be time-
consuming (Anderson and Gaston 2013, Linchant et al. 2015), although automatic counting 
software may streamline manual analysis (Bentley et al. 2023; Corcoran et al. 2021a, 2021b; 
Elliott et al. 2011). 
	 Acoustic surveys are another option for surveying bats. Traditionally, acoustics have 
been used to assess bat activity rather than for counting bats exiting a roost (Kunz et al. 
2009, Milchram et al. 2020). Acoustic methods are non-invasive, cost-efficient, and capable 
of covering large areas for extended periods with low maintenance (Milchram et al. 2020). 
More recent studies have developed methodologies for conducting bat counts using acous-
tic detectors. For example, Kloepper et al. (2016) counted Tadarida brasiliensis Geoffroy 
(Mexican Free-tailed Bats) leaving a cave by simultaneously recording emergences with 
thermal imaging and ultrasonic microphones placed outside the roost. The thermal-imaging 
videos were used to determine how many bats exited at each moment in time, and these data 
were used to establish a relationship between acoustic sound levels and number of bats that 
exited the cave. With this approach, the individual echolocation calls are not counted, but 
rather the sound level is measured in various ways, such as taking a root mean square (RMS) 
of the signal. This acoustic censusing method showed promising results with a colony of 
about 700,000–900,000 Mexican Free-tailed Bats (Kloepper et al. 2016) and 22,600–38,700 
Myotis grisescens Howell (Gray Bats) (Eddington et al. 2023). However, this method has 
not been tested at smaller colonies with only hundreds or a few thousand bats.
	 We conducted an initial field test of 3 methods for counting bats during emergence 
events: visual counts by human observers, counts from thermal imagery acquired with 
drones, and acoustic-based estimates. Our first objective was to determine the similarity 
of the counts produced with these 3 approaches, both on short time scales (within 1-min 
intervals) and across an entire emergence. However, because no method can produce a 
perfect count, the differences in counts produced with different methods (i.e., error rates) 
result from the sum of errors from each method being compared. By using these methods 
concurrently, we aimed to provide a comparative analysis of their strengths and limitations, 
as well as provide practical knowledge for researchers and managers who may be interested 
in adopting these approaches. We emphasize that the aim of this study was not to conduct an 
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exhaustive comparison of these methods under different conditions, but rather to conduct an 
initial test and comparison. The inclusion of drone-acquired thermal imagery and acoustic-
based estimates was intended to broaden the toolkit available for bat monitoring and provide 
an exploratory review of method performance. 

Field-site description
	 Bat emergence counts were conducted at 2 roosts using 3 concurrent methods (Fig. 1). 
The first site, located in Hawkins County, Tennessee, was surveyed for 10 nights from 15 to 
25 June 2021. Across these 10 nights, we flew a drone at altitudes ranging from 45 to 65 m 
to determine the altitude at which the relative size of bats in the images became too small 
for accurate detection. After review, we discarded 7 nights during which the altitude was 
too high for accurate drone-based counts, retaining 3 nights for further analysis. The site 
consisted of an incomplete concrete building surrounded by open fields, industrial develop-
ment, and forested parcels along the Holston River. A colony of Gray Bats inhabited the 
structure year-round. During emergence, bats exited the roost through a gap in the first-floor 
ceiling before traveling along wooded, edge habitat and crossing into an open field.
	 The second roost, located in Yancey County, North Carolina, was surveyed for 10 nights 
between 8 and 22 August 2021. This site features a concrete bridge that spans the South Toe 
River; the bridge is about 30-m long and located 10 m above the stream. A colony of Ep-
tesicus fuscus Palisot de Beauvois (Big Brown Bats) inhabited the bridge. The bats emerged 
from the bridge’s bearing spaces and traveled either east or west via the river corridor (Fig. 
1). Bats leaving in opposite directions would not be visible or detected at the same time; 
therefore, eastward and westward counts were compared separately.

Methods

Visual observations
	 At each site, 2 people observed bats silhouetted against the sky during emergence. The 
observers had mixed experience with visual counts: 1 observer in North Carolina had prior 
experience, while the other 3 persons had training, but no direct experience counting bat 
emergences. Visual surveys commenced 30 min before sunset and continued throughout 

Figure 1. Emergence pathway and data collection points at the (a) Tennessee and (b) North Carolina 
sites. The arrows represent the emergence pathways. Drone icons represents where the drone-acquired 
thermal imagery was recorded; microphone icons represent the location of the acoustic recorders; and 
person icons represent the location of the visual observers.
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the emergence, concluding when bats were no longer visible due to decreased light. All 
observers used the smartphone application “Counter” (Tsukanov 2021). Bats were counted 
individually as they either exited (+1) or re-entered (-1) the roost. The application provided 
a precise time history of each bat that was counted, which could later be compared to 
concurrent counts from acoustics and thermal video. 
	 In North Carolina, observers were stationed 35 m east and west of the bridge. Their 
counts were summed to generate the total count for each night to compare with counts 
from thermal imagery. Conversely, in Tennessee, 2 observers were stationed at a single 
emergence viewpoint; therefore, we had a replication of observer counts at this site. 

Drone-acquired thermal imagery 
	 A drone (Phantom 2 non-Vision, DJI, Shenzhen, China) was operated directly above 
the bat roost exit. In accordance with federal and state regulations, the pilot obtained a Part 
107 Remote Pilot Certificate and scientific permits prior to deploying the drone. Regulatory 
compliance consisted of strict adherence to airspace restrictions, safety protocols, and use 
of anti-collision lighting visible from at least 3 statute miles. The drone used in the current 
study was acquired based on available resources, although there were known issues with 
its flight stability and limited duration of battery charges (see Discussion). Even with such 
limitations, we believe this model was suitable to test the ability of drones to produce 
accurate exit counts.
	 The drone was equipped with a thermal camera (Vue Pro R 640, Teledyne FLIR, 
Wilsonville, OR) positioned perpendicular to the ground. The camera had a thermal 
resolution of 640 by 512 pixels, a 13-mm lens, and a field of view of 45 by 37°. Thermal 
imagery was recorded at 30 frames/sec. The drone operator maintained a similar field of 
view between nights using visual landmarks. The clock of the drone was synchronized to 
the clock of the audio and visual observations, allowing us to compare counts during the 
intervals when the drone was collecting data. Recordings concluded either at the end of the 
emergence or when the batteries were depleted. 
	 The drone was flown at an altitude of 45 m above ground level, providing a ground 
coverage of about 38 by 29 m. Operational procedures were implemented to maximize the 
drone’s limited battery life, with flight initiated at the first signs of emergence. The pilot 
maintained a visual line of sight on the drone throughout operation to prevent any potential 
interactions between the bats and the unit. However, the drone could fly and record thermal 
video for only 15 min before it had to land for replacement of batteries. Due to variable 
weather conditions, 1–3 flight periods were conducted per night.
	 For effective detection of target species in thermal imagery, sufficient thermal contrast is 
required to distinguish bats from the background. Gray Bats in Tennessee contrasted against 
the cooler concrete building, whereas Big Brown Bats in North Carolina contrasted against 
the cold river below the bridge (Fig. 2). Aspects of the thermal camera (i.e., lens focal length 
and sensor size), coupled with a flight altitude of 45 m, resulted in bats that appeared as 
3–4 pixels in diameter within images. Thermal imagery was post-processed using video-
editing software (Premiere Pro, version 15.0, Adobe, San Jose, CA), to stabilize drone-
related motion and enhance contrast for target detection. Contrast values were adjusted 
depending on visual needs, typically being increased by 25–30°. The drone lacked GPS 
capabilities, leading to flight instability (drift) that resulted in unsteady imagery not suitable 
for automatic counting software (Corcoran et al. 2021a). Therefore, bats were manually 
counted in ImageJ (Schneider et al. 2012).
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Acoustic-based estimates
	 Acoustic detectors equipped with omnidirectional microphones (models SM4BAT-FS 
and SMM-U2, Wildlife Acoustics, Maynard, MA) were positioned outside each roost’s exit. 
The detectors were configured to record continuously throughout the emergence, with a 
sample rate of 256 kHz and minimum trigger frequency of 20 kHz; the schedule was set to 
“record always,” and maximum length of recording was 60 min. Microphones were oriented 
to detect calls from the emergence pathway, minimizing interference from overhanging 
structures or vegetation. We placed detectors at the same locations with the same settings 
for 10 nights in both Tennessee and North Carolina.
	 In Tennessee, a single acoustic detector was deployed about 5 m from the center of the exit. 
To avoid recording bats swarming in the building, the microphone was aimed at a 45° angle 
away from the roost, in the direction that the bats traveled as they emerged. In North Carolina, 
1 detector was placed about 15 m downstream (east), and another detector was placed about 
15 m upstream (west) of the bridge to capture bats leaving in both directions. We determined 
that the exit rate from the detector on the west side of the bridge was likely too low to be used 
for acoustic analysis (<50 individuals per night), so we restricted our analysis to the detector 
and manual counts from the east side of the bridge, where exit rates were greater.
	 Acoustic files were processed using custom code written in MATLAB (v2022; 
Mathworks, Natick, MA; see Appendix 1 for sample code). At the quieter Tennessee site, 
drone noise was detected, whereas at the North Carolina site, insect, road, and other low-
frequency ambient noises were more prominent. A 30-kHz high-pass filter was applied to 

Figure 2. Example of drone-acquired thermal imagery during emergences. (a) Example image from 
North Carolina. (b) 3000% zoomed image of single bat from the red rectangle shown in (a). (c) 
Example image from Tennessee. (d) 3000% zoomed image of 3 bats from the red rectangle shown in 
(c).
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remove low-frequency, non-targeted acoustic signals. We then split files into 1-min sections 
and calculated root mean square (RMS) sound pressure levels (SPL) and median SPL from 
each 1-min interval (Fig. 3). Because a calibration tone of known intensity was not used and 
is not necessary for this kind of analysis, we measured and reported results in decibels SPL 
relative to the maximum value that the acoustic detector can record, following the method 
described by Eddington et al. (2023). Specifically, RMS SPL in decibels (dB) was calculated 
as: SPL_RMS=20 log_10 ((RMS of signal)/(RMS of maximum signal)),
	 where signal was the recorded sequence of amplitude values that ranged from -1 to 
1, and maximum signal was a repeating sequence of -1 and 1 values. With this approach, 
the maximum value that could be recorded on the detector was 0 dB, and all other values 
were negative relative to this maximum SPL. Median SPL in dB was calculated the same 
way, except the median signal level was used in the equation instead of RMS. We chose to 
calculate median SPL because we expected it not to be biased by short time periods with 
high sound levels, such as when individual bats flew close to the microphone.
	 The counts from visual observations were used to establish a correlation between visual 
emergence counts and either RMS or median SPL measured within 1-min intervals. For this 
analysis we modeled the relationship as an exponential equation, since a doubling of sound 
level results in an increase of 6 dB in SPL: N_bats=a SPL^x.
	 Here, Nbats is the number of bats exiting within a 1-min interval, SPL is either the RMS 
or median sound pressure within a 1-min interval, and a and x are solved for in the analysis.

Comparison of methods and statistical analysis
	 We calculated emergence counts from the data obtained from the observers, drone-
acquired thermal imagery, and acoustic estimates. We split all counts into 1-min intervals 
and synchronized across methods for each site and night of surveys, based on timestamps 
established during data collection. We first compared human-to-human variability at the 
Tennessee site, where we had replication of observations at the same roost exit. We then 

Figure 3. Example acoustic recordings used in analysis, including oscillograms and spectrograms 
from (a, c) Tennessee and (b, d) North Carolina. Measured levels for RMS and median amplitudes are 
shown. Note the nearly continuous background sound at approximately 50 kHz in (c) resulting from 
the large number of bats present at the Tennessee site, but the reduction of background signals at the 
lower-density North Carolina site (d).
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compared video-based and acoustic-based counts to these human counts, although 2 nights of 
data from North Carolina (15 and 21 August 2021) were not used in the analysis because the 
sound files were corrupted by unknown causes. To determine the similarity of estimates, we 
compared total counts for each method and for each survey night, considering only the periods 
when data were available for the pairwise methods being compared. For these comparisons, 
1 count was selected as a baseline (typically the human visual counts), and we calculated the 
absolute value of the difference between this count and the count measured with the other 
method. The median of this absolute difference was then taken as a summary of the overall 
similarity of the 2 counts. Because drones only operated for 15 in at a time, these counts were 
compared to human counts only within the same intervals.
	 In addition, we generated regression models, using visual observation count as the pre-
dictor variable and acoustic estimate or thermal count as the response variable, with counts 
binned into 1-min intervals. We used the coefficient of determination (r2), as an indicator of 
the similarity of the counts generated using the different methods. We note that there was 
likely temporal autocorrelation both on a minute-to-minute and night-to-night basis within 
our data, and therefore, statistically, there was some degree of pseudo-replication. 
	 We used a cross-validation procedure to estimate nightly emergence counts from acoustic 
SPL levels from data collected on nights not including the night for which the prediction was 
made. For North Carolina, we used 8 nights of data. We split these 8 nights into 2 sets—the 
first 4 nights and the second 4 nights. From each set, we created an exponential regression 
model to predict nightly emergence counts for the other set of nights. For Tennessee, we had 
3 nights of data; therefore, we created a model to predict each night’s estimate using data from 
the other 2 nights.

Results

Comparison of counts by multiple human observers
	 Across 3 nights in Tennessee, the 2 observers had highly correlated overall counts, as 
displayed in the time-courses of the counts for each night (Fig. 4a) and the linear regression 
of counts conducted broken down for all 3 nights in 1-min intervals (Fig. 4b; r2 = 0.85, F1, 
142 = 690, P < 0.0001). However, there was a 5-min period during the third night (gray-filled 
symbols in Fig. 4a–b) when the 2 observers differed considerably, with observer 2 producing 
counts approximately 200% that of observer 1. This event occurred near the peak emergence 
of the bats. An assessment of counts across methods (discussed below) suggested that ob-
server 1 had a more accurate count. Therefore, the counts from observer 2 during these 5 min 
were excluded as outliers from further comparisons. Observer 1 also had slightly lower counts 
than observer 2 overall, as indicated by a slope of the regression line equal to 0.85 (95% CI: 
0.82–0.88), even with the outliers removed. 

Comparison of visual observation and thermal counts
	 Overall, visual counts were closely correlated with thermal-imagery counts for each night 
at both locations (Fig. 5a–c). The linear regression of the 1-min interval counts for the 2 meth-
ods revealed a high correlation in both Tennessee (r2 = 0.91, F1, 150 = 906, P < 0.0001) and 
North Carolina (r2 = 0.83, F1, 578 = 1164, P < 0.0001). The slope of the regression equation 
did not differ from 1 (95% CI 0.99–1.13) for Tennessee; however, the slope equaled 0.90 (95% 
CI: 0.85–0.95) for North Carolina, indicating that visual counts were about 10% lower than 
thermal counts on average.
	 When we compared counts aggregated across study nights during the times when drones 
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were operational, thermal-imaging counts differed from visual counts by a median of 32% 
in Tennessee and 17.5% in North Carolina. However, some nights differed by as much as 
263% between methods in North Carolina (Table 1).

Figure 4. Temporal activity of bats during emergence censused by 2 observers in Tennessee. (a) Counts 
of bats over time for the 3 nights censused. (b) Comparison of counts recorded by the 2 observers over 
1-min intervals. Gray-shaded symbols indicate 5 intervals during which the 2 individuals differed 
substantially in their counts. Time in (a) indicates minutes after the beginning of the surveys.

Figure 5. Temporal activity and comparison of observer counts and drone-acquired thermal imagery 
counts at our 2 field locations. (a, b) Temporal activity of Big Brown bats over 10 survey nights in 
North Carolina. (c) Temporal activity of Gray Bats during 3 nights in Tennessee. (d, e) Comparison 
of visual and thermal counts within 1-min intervals (d) North Carolina and (e) Tennessee. Note that 
data were only available for thermal counts in 15-min intervals because of limited drone battery life, 
which required the drone to be landed periodically to replace batteries.
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Comparison of visual observation and acoustic counts
	 Using an exponential model, we found a strong positive correlation between counts 
obtained by human observers and counts estimated from acoustic recordings (Fig. 6). 
In North Carolina, RMS SPL had a higher correlation with visual counts (r2 = 0.51, F1, 
359 = 398, P < 0.0001) than did median SPL (r2 = 0.33, F1, 359 = 484, P < 0.0001). In 
contrast, at the Tennessee site, median SPL was better predicted by observer count (r2 = 
0.91, F1, 78 = 2220, P < 0.0001) than was RMS SPL (r2 = 0.54, F1, 78 = 180, P < 0.0001). 
Our use of cross-validated exponential models to predict nightly counts produced median 
error rates between visual observation and acoustic estimates of 4.7% (range 3.5–21.8%) 
in Tennessee and 15.1% (range 6.4–144%) in North Carolina (Table 2).

Table 1. Comparison of counts from visual observations and from thermal imagery at the Tennessee 
(TN) and North Carolina (NC) sites in 2021.

TN
date

TN 
visual*

TN thermal % 
Difference

NC
date

NC visual* NC 
thermal

% Difference

18 June 1524 2012 +32% 9 August 28 39 +39%

19 June 1937 2570 +33% 10 August 226 140 -38.1%

20 June 2449 2598 +6% 11 August 236 227 -3.9%

- - - - 12 August 252 241 -4.4%

- - - - 13 August 261 235 -10%

- - - - 15 August 176 162 -8%

- - - - 18 August 197 148 -24.9%

- - - - 19 August 168 262 +56%

- - - - 21 August 8 29 +263%

- - - - 22 August 315 310 -1.6%

Absolute 
median 
difference

- - 32% - - - 17.5%
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Discussion

	 We compared the similarity of 3 methods for counting bat emergences at 2 sites with 
varying conditions. Overall, the 3 methods provided similar counts, with some notable 
exceptions that we discuss below. Human-human variability at the Tennessee site, for which 
we had replicated observers, showed an r2 of 0.85 (Fig. 4), with much of the difference 
coming from a 5-min period on 1 night when the 2 observers differed in their counts by 
approximately 200%. This discrepancy occurred during a period of high-density emergence 
(about 200–300 bats/min or 3.3–5.0 bats/sec). The emergence rate when counts differed 
between observers may approximate an upper limit, above which human observers can no 
longer count bats with high accuracy (Betke et al. 2008); however, more research is needed 
in this area, and observer experience may be an important factor in determining accuracy 
under challenging circumstances. We recommend the use of counter software for visual 
observation counts in the research and management of bat populations. This approach 
is simple, inexpensive, and provides valuable additional data in the form of time-course 
histories for bat emergences.
	 This was the first study to test drone-acquired thermal imagery for counting emerging 

Figure 6. Comparison of acoustic sound pressure levels and visual observation counts. Time courses 
of activity are shown for (a, b) North Carolina and (c) Tennessee. The relationship between root mean 
square (RMS) or median Sound Pressure Levels (SPL) is modeled as an exponential equation for (d) 
North Carolina and (e) Tennessee, respectively. Acoustic levels are shown in decibels (dB) relative to 
the highest level the acoustic recorders were capable of recording. Red dashed lines indicate the fitted 
exponential models. Acoustic count values in (a–c) show estimated counts based on the exponential 
models shown in (d) and (e).
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bats. Previous researchers used drones with thermal cameras and acoustic detectors to study 
bat behavior (Fu et al. 2018, Jespersen et al. 2022, Kloepper and Kinniry 2018, Michez et al. 
2021) or drones with thermal cameras to count stationary bats roosting in trees (McCarthy 
et al. 2023, Whitworth et al. 2022). We found high r2 values for predicting drone-acquired 
thermal counts from concurrent ground-based human counts (r2 = 0.83 and 0.91), based on 
comparisons of data collected within 1-min intervals (Fig. 5). However, while nightly counts 
of visual observers and thermal imagery typically differed by 10–30%, counts differed by 
as much as 263% on individual nights (Table 1). With the approach taken here, we cannot 
determine to what degree each method contributed to this discrepancy. Nonetheless, in at 
least some cases, these differences appear to be the result of humans under-counting bats 
during dark conditions. Overall, our findings indicate that drone-acquired thermal imaging 
is a promising method for surveying bats.
	 We have several recommendations based on this initial test of drone-acquired thermal 
imaging. We used a drone with known limitations, based on the equipment available for this 
project. For future surveys, a drone with sufficient battery life to fly for an entire emergence 
is essential; in our case that would be 30–60 min. Our drone had poor flight stability, 
resulting in shaky thermal images. Unsteady drone flight is commonly referred to as “drift” 
and can be attributed to lack of a GPS signal, poor calibration, or other mechanical issues. 
To reduce the likelihood of drift, drones should be regularly inspected for damage, have a 
balanced payload, and maintain an unobstructed GPS satellite connection. Excessive drift 

Table 2. Comparison of visual observation counts and population estimates from acoustic methods 
at the Tennessee (TN) and North Carolina (NC) sites in 2021.

TN
date

TN 
visual

TN 
acoustic

% Difference NC
date

NC 
visual

NC acoustic % Difference

18 June 2987 2335 -21.8% 9 August 167 156 -6.4%

19 June 2769 2867 +3.5% 10 August 246 212 -13.9%

20 June 2366 2254 -4.7% 11 August 263 241 -8.5%

- - - - 12 August 262 245 -6.6%

- - - - 13 August 255 296 +16.3%

- - - - 18 August 193 236 +22.4%

- - - - 19 August 127 310 +144%

- - - - 22 August 283 392 +38.4%

Absolute 
median 
difference

- - 4.7% - - - 15.1%
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prevented us from using automated software, such as ThruTracker (Corcoran et al. 2021a) 
or BatCount (Bentley et al. 2023) for counting bats from thermal images, but an automated 
counting approach would significantly reduce the time required for video processing. 
Sufficient thermal contrast with the background is crucial for successfully detecting bats in 
thermal imagery. Some of the error in our counts may have resulted from bats flying under 
vegetation, where they could not be detected by the cameras (Jumail et al. 2020, Wang et 
al. 2019). Bats can also be missed by thermal cameras if the background is at a temperature 
similar to that of the bats, so care should be taken in selecting sites and testing acquisition 
of thermal video under different conditions.
	 Another consideration for thermal imagery is selection of camera resolution, focal 
length, and altitude of the drone, which collectively determine the pixel size of bats in 
imagery (Christiansen et al. 2014). In Tennessee, several nights of data had to be discarded 
when the flight altitude of the drone was increased from 45 to 65 m, indicating that we 
operated near the detection limit for bats under our conditions. Although concerns arose at 
45 m that the drone might affect bat behavior, an examination of the emergence data (Fig. 5c) 
revealed no unusual patterns in the counts during periods of drone flight compared to non-
flight periods. Although we did note noise from drones in audio recordings in Tennessee, 
this was not the case at the louder North Carolina location. Ambient noise levels should be 
considered when conducting drone surveys and evaluating their impact on wildlife in the 
future. Several studies have examined the disturbance caused by drones to bats and other 
wildlife, highlighting the importance of minimizing such disturbances (Ednie et al. 2021, 
Mulero-Pázmány et al. 2017, Schad and Fischer 2022). Additionally, we recommend using 
thermal cameras with a lens of greater focal length and narrower field of view than the one 
we used, which would allow drones to be flown at higher altitudes (preferably ≥65 m) and 
still obtain sufficient pixel resolution to image bats. 
	 In our study, using a camera with a 13-mm lens and a resolution of 640 by 512 
pixels, we detected bats with a wingspan of 25–35 cm in imagery taken at an altitude of 
45 m. Bats in images were typically 9–16 pixels in area or 3–4 pixels in diameter (Fig. 
2). A geometric conversion indicates that, under these conditions, 1 pixel equals 5 cm, 
and therefore, the bats we studied should have appeared as 5–7-pixels wide, if the full 
wingspan were visible. Although our observed diameter was only 3–4 pixels, a lower 
value is expected, since the wings of bats are colder than the body (Rummel et al. 2019) 
and will not always be visible throughout the wingbeat cycle. For future studies, we 
suggest using half the wingspan for estimating detection range and appropriate flight 
altitude for thermal imaging of bats. An online tool (Drone Observing Tool) is available 
for determining the altitude required for detecting animals of a certain size for a given 
camera resolution and viewing angle (Burke et al. 2019).
	 In addition to these technical considerations, researchers should adhere to regulations 
and guidelines concerning drone flights to ensure responsible and legal drone operation. 
Depending on location, specific regulations may govern flight altitude, airspace 
restrictions, and the permits required for conducting research with drones. Regulations 
often vary between national and local authorities and may change over time. Therefore, 
researchers should stay informed about current rules and ensure compliance before 
conducting drone operations.
	 To our knowledge, this was only the third study to test the use of acoustic sound levels 
for censusing bats at emergence (Eddington et al. 2023, Kloepper et al. 2016). On a minute-
by-minute basis, the acoustic results from the Tennessee site were more consistent with 
visual estimates (Fig. 6; r2 = 0.91) than at the North Carolina site (r2 = 0.51), where there 
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were fewer bats (mean visual observation estimate of 2707 bats in TN, compared to 224 in 
NC). However, cross-validated nightly estimates had a median error of 4.7% in Tennessee 
and 15.1% in North Carolina, which suggested that aggregated nightly estimates can be 
precise even when there is a higher variance in acoustic SPL data, as in North Carolina. The 
2 previous tests of this method were conducted at roosts containing 700,000–900,000 bats 
(Kloepper et al. 2016) and 22,600–38,700 individuals (Eddington et al. 2023). Therefore, 
our study demonstrated that counts based on sound level yield results similar to those 
produced with other methods on colonies that were 2 orders of magnitude smaller than 
previously tested. We did observe some nightly counts with large discrepancies compared 
to visual counts, such as a 144% difference on 19 August in North Carolina (Table 2). 
We cannot determine whether this was caused by errors in the human or acoustic counts; 
however, we recommend counts at smaller emergences be based on multiple nights of data 
to yield more accurate results.
	 The RMS SPL method was initially shown to be applicable to emergence rates of 10 
bats/sec or higher (Kloepper et al. 2016), but notably, neither the site in North Carolina or 
Tennessee reached this rate limitation. To account for low emergence rates, we developed 
a variation of the acoustic-based method that used the median sound level from acoustic 
files. This technique also accounted for the varying distance of emerging bats from the 
microphone, which results in animals closer to the microphone being recorded at a higher 
level than those farther away. The median SPL had a higher correlation with visual 
counts in Tennessee than in North Carolina, and this difference could be attributed to the 
differential placement of the acoustic recorders. Positioning the microphone near the roost 
exit in Tennessee resulted in recordings of many bats flying nearby, a scenario effectively 
accounted for by the median SPL method. In comparison, the deployment of acoustic 
detectors farther from the exit in North Carolina resulted in a more uniform sound level of 
recorded calls. The median SPL method provides an additional tool for conducting SPL-
based acoustic bat counts, but the technique should be compared to the RMS method on a 
case-by-case basis. 
	 Acoustic-based surveys offer notable advantages; they are cost-effective, require little 
labor, and allow extended deployment periods, ranging from weeks to months. In addition, 
acoustic methods can be simultaneously used at multiple roost exits, minimizing the need for 
extensive personnel involvement, compared to traditional count methods. However, some 
additional labor is required to establish baseline visual or thermal counts. Once an acoustic-
based estimate is established for an emergence site, it can enable continuous monitoring 
of bat roosts throughout the occupancy period, providing an opportunity to record nightly 
fluctuations in colony size (Barclay et al. 2024). Besides counting bats, acoustics can 
concurrently serve the traditional purpose of identifying bats to species. We recommend 
that these baseline counts with other methods be conducted at intervals throughout the 
survey period, if feasible, to account for potential changes to the acoustic scene or factors 
that could affect the relationship between number of bats present and acoustic SPL. Ideally, 
conservation managers should possess some training in acoustics and thoroughly examine 
files for extraneous noise from insects, different bat species, and other acoustic artifacts that 
may not be filtered during processing.
	 In future studies aimed at refining counting methods, several considerations can be 
explored. Subsequent research could focus on monitoring bat behaviors more closely 
during drone operations to ascertain potential stress or alterations in emergence patterns. 
Advancements in both drone and thermal-imaging technologies could provide enhanced 
flight stability, extended battery life, and increased thermal resolution. These technological 
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improvements could significantly enhance the accuracy of population monitoring while 
ensuring minimal disturbance. Additionally, acoustic-based estimates could be improved 
with the implementation of machine learning. Machine-learning models might be better 
suited than the methods employed here for filtering background noise and handling 
variation in sound levels of bats while minimizing human error (Mac Aodha et al. 2018).
	 We conducted an initial comparison of 3 methods for counting bat emergences at 2 
sites with varying conditions. Our study should be viewed as preliminary and needs further 
replication. Nevertheless, our findings support the validity of drone-acquired thermal 
imagery and acoustic-based estimates for external emergence counts under the conditions 
that were tested. Each method has unique benefits and limitations, and we support utilization 
of multiple methods in combination, to provide more confidence in the results than those 
provided by any single method used in isolation. 
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