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Multi-scale Predictors of Northern Long-eared Bat
(Myotis septentrionalis) Occupancy in the United States

Amy K. Wray"", Bradley J. Udell', Helen T. Davis', Richard D. Inman', Bennet T.
Lohre', Haley B. Price', Jonathan D. Reichard’, Andrea N. Schuhmann', Bethany
R. Straw!, Frank C. Tousley', Jill Utrup?, Ashton Wiens®, and Brian E. Reichert'

Abstract - Historically, Myotis septentrionalis (Northern Long-eared Bat) was among the most
common forest-interior species in North America. Largely due to high mortality from white-nose
syndrome, this species has experienced severe population declines across its range. To create an up-
dated species distribution map representing summer occupancy probabilities from 2017 to 2022, we
integrated stationary acoustic data with live-capture data from the database of the North American Bat
Monitoring Program into a multi-scale, multi-method occupancy modeling framework. Our results
provide data-driven predictions with quantified uncertainty for summer occupancy probabilities for
Northern Long-eared Bats at 2 spatial scales across the range of the species, while also accounting for
inherent observation biases (e.g., imperfect detection).

Introduction

Efficient wildlife management requires understanding where the species of interest
likely occurs. Predicting occurrence for populations in decline is challenging—even more
so for species that are small, cryptic, or highly mobile (Emmet et al. 2021; MacKenzie et
al. 2002, 2005). For species that are rare and challenging to survey, traditional modeling
methods often require extensive data collection and intensive modeling frameworks (Bal-
antic and Donovan 2019, MacKenzie et al. 2002, Nichols et al. 2008). Multi-scale models
can offer solutions for predicting the occurrence of species with low detection probability
by using sampling units to explicitly account for both the spatial (availability bias) and
temporal (perception bias) components of imperfect detection (Nichols et al. 2008). Multi-
scale and multi-method models allow for the incorporation of data collected at various
spatial scales or using different methods, thereby maximizing the amount of information
used to calibrate a model. Some understanding of the resources that govern the distribution
of a species is also required to make predictions that are ecologically meaningful. Adding
this valuable context can be achieved through the inclusion of model covariates informed
by the natural history of a species.

Myotis septentrionalis (Trouessart) (Northern Long-cared Bat) is widely distributed
across North America (U.S. Fish and Wildlife Service 2022a). Compared to many other My-
otis, this small-bodied species has low wing loading and is adapted to moving and foraging
in forest understories (Caceres and Barclay 2000). Since Northern Long-eared Bats forage
by aerial hawking in cluttered environments, as well as by gleaning prey, their search-phase
echolocation calls are quiet and generally higher in frequency, steeper in slope, and shorter

"United States Geological Survey, Fort Collins Science Center, 2150 Centre Avenue Building C, Fort
Collins, CO 80526. *United States Fish and Wildlife Service, Ecological Services, 300 Westgate
Center Drive, Hadley, MA 01035. *United States Geological Survey, Geology, Energy and Minerals
Science Center, 12201 Sunrise Valley Drive, Reston, VA 20192. “Corresponding author - awray@
usgs.gov.
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in duration compared to sympatric species, although these characteristics can shift depend-
ing on the vegetation structure present in their environment (Broders et al. 2004, Faure et al.
1993). Though previously common throughout their range, recent capture rates of Northern
Long-eared Bats are low (Rojas et al. 2019), and these bats can be difficult to observe in
hibernacula or distinguish from other Myotis due to their preference for hibernating in deep
crevices or cracks (Raesly and Gates 1987). Since the arrival of the fungal disease white-
nose syndrome (WNS) in North America, this species has been one of the most severely
afflicted, with population declines ranging from 97 to 100% (Cheng et al. 2021, Frick et
al. 2015). The severe declines have led to the species being classified as endangered in the
United States (U.S. Fish and Wildlife Service 2022b).

Strategic modelling efforts can support conservation and management decisions for
wide-ranging species with varying data availability, as is the case for Northern Long-eared
Bats. For other taxa, centralized systems for managing large datasets, such as eBird (Neate-
Clegg et al. 2020) and the Global Biodiversity Information Facility (Svenningsen and
Schigel 2024), have facilitated population-monitoring on a broader scale than previously
possible. However, for many bats, standardized landscape-level data that could enable these
types of analyses have been limited until recently. Largely due to the adoption of acoustic-
monitoring techniques, the quantity of available monitoring data on bats has increased sub-
stantially (Sugai et al. 2019). The North American Bat Monitoring Program (NABat) was
created, in part, to expand acoustic and non-acoustic data collection for bats (Loeb et al.
2015, Reichert et al. 2021). NABat also aims to increase accessibility to those data to inform
timely decisions for managing bats (Neece et al. 2019). Although the inherent shortcomings
of acoustic autoclassification (e.g., Lemen et al. 2015, Russo and Voigt 2016) necessitate
either reduction of false-positive detections (Britzke et al. 2002) or explicit modeling of
false positives (e.g., Irvine et al. 2022), the large amount of data compiled through the
NABat database provides unique opportunities for improved quantification of occupancy
probabilities, even for species that are rare or difficult to detect. Herein, we used both
capture records and data from stationary acoustic monitoring to create an updated map of
occupancy probabilities across the range of the Northern Long-eared Bat in the contiguous
United States. Overall, our results provide estimates of predicted occupancy probabilities
for Northern Long-eared Bats that could help inform future management objectives.

Methods

Data sources

The NABat sampling scheme is based on grid cells that are 10 kilometers (km) by 10
km (hereafter called grid cells), each of which includes 4 nested quadrants of 5 km by 5
km (hereafter called quadrants). Model inputs included data collected in summer (1 May
through 31 August) from 2012 through 2022, with predictions made only for the pre-volan-
cy season (1 May through 15 July; Loeb et al. 2015). We performed data processing, quality
inspection, and formatting in R version 4.3.2 (R Core Team 2023) with the specific packages
“tidyverse” and “sf”” (Pebesma 2018, Wickham et al. 2019). For clarity, we have shown the
general workflow for data inclusion in the occupancy model in Figure 1. We describe the
processing steps below, and more details appear in the data release of model outputs associ-
ated with this manuscript (Wray et al. 2024).

Data sources included nightly detection and non-detection records from captures and
stationary acoustic surveys (hereafter “acoustic surveys”; Fig. 1). Capture records were
exported from the NABat database as nightly summaries (i.e., the number of captures per
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species for each night of a survey). From these records, we imputed zeroes (non-detections)
for surveys if other bats were captured but Northern Long-eared Bats were not caught.
Acoustic records were exported from the NABat database at the level of the call file (i.e.,
each acoustic recording and its assigned identification) for all records using a species list
(i.e., a classifier) that included the Northern Long-eared Bat.

For acoustic survey data with manual vetting (identifications manually assigned by ex-
perts), we used the manually provided identification to determine detections and non-detec-
tions. For any call files that underwent manual vetting within the same batch of recordings,
with “batch” defined as a unique combination of site, night, project, processing software,
species list, and recording equipment, we used the identities assigned to the vetted records
instead of relying on any automatic identifications generated by classification software
(hereafter “auto IDs”, Fig. 1). For example, if a subset of acoustic files in a batch received
manual vetting, we excluded any remaining files from that batch that were not manually
reviewed (Fig. 1). For files with manual vetting, we considered all software types (including
files that did not list a software type) acceptable. Similarly, we considered files that were
ambiguously identified only as “high frequency”, “low frequency”, or “Myotis spp.” (Table
1) to represent a nontarget species (i.e., any bat besides the Northern Long-eared Bat).

For acoustic survey data from batches without any manual vetting, we used a maximum
likelihood estimator (MLE; Britzke et al. 2002), which represents an efficient approach to
maximize the amount and quality of the data inputs for our model. This approach can be use-
ful for reducing potential false positives. Specifically, the likelihood of a species’ presence

Stationary acoustic data 1
(el ) ) Capture data
Software with appropriate ey
?
From NABat database: all calls periorimanceitable
identified as a bat species + NolDs with
a classifier that included MYSE Drop from MYSE capture =
l l analysis detection
[ manually vetted? MLE: process MYSE + all other bat
species according to software & classifier other bat species
l capture event
without MYSE

MYSE detection - capture
Input directly into model LRT p-value <0.05? = non-detection
(detection + non-detection) o
Convert detection
to non-detection

il
Available MLE value from
approved software?

00
00 00

Figure 1. Decision flowchart for inclusion of stationary acoustic and capture data. Zeroes represent
non-detections, while ones represent detections. MYSE = Myotis septentrionalis (Northern Long-
eared Bat). NABat = North American Bat Monitoring Program. LRT = likelihood ratio test. MLE =
maximum likelihood estimator. NoID = acoustic recording files that were identified as a bat, but not
assigned to a group or user-defined category.

Retain detection
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can be calculated depending on 3 factors—the specificity and sensitivity of a particular type
of autoclassification software, the potential species included in the autoclassification spe-
cies list, and the total number of auto IDs for a target species compared to all other species.
Only certain software brands and versions had available performance tables that included
the number (rather than the proportion or percentage) of calls that were classified as each
species, which is necessary to manually calculate MLE metrics (Fig. 1). In our dataset, all
versions of Kaleidoscope Pro (Wildlife Acoustics, Maynard, MA) with the version number
listed had performance tables available that were acceptable for MLE calculation. Most call
files from acoustic surveys without manual vetting used a software type that was compatible
with manual calculation of MLE scores (see Supplemental Figure S1A, available online at
https://eaglehill.us/urnaonline/suppl-files/nabr-018-Wray-s1.pdf).

MLE calculation for auto IDs from stationary acoustics without manual vetting
Performance tables for each software brand and version included individual species
and the category “NoID”, which represented an estimation of all files that were processed
through autoclassification software but not identified to species. Since these tables did not
include ambiguous groupings, like high frequency, low frequency, or Myotis spp. (Table 1),
we excluded files with auto IDs in these categories. All species (besides Northern Long-
eared Bats) and NolDs were then aggregated into a category of “nontarget species.” Ap-
proaches using MLE are imperfect. For example, true detections may be converted to false
negatives, which may be more common when there are few call files from a target species
or when true detections represent a low proportion of call files within the same frequency
groups (Ford et al. 2024). For our approach, false negatives (but not false positives) could
be accounted for by modeling the observation process (i.e., detection, described in further

Table 1. Inclusion of manual and auto ID (identifications automatically assigned by classification
software) categories in model input used to create an updated bat species distribution map. MYSE
= Northern Long-eared Bat (Myotis septentrionalis). EPFU = Big Brown Bat (Eptesicus fuscus).
MYSEMYSO = ambiguous ID assigned as Northern Long-eared Bat or Indiana Bat (Myotis
sodalis). 40k = various species with pulses that have a minimum frequency of approximately
35-45 kHz. HighF = various species with pulses having a minimum frequency higher than 30kHz.
MYSP = unknown species in the genus Myotis. NoBat = not a bat. NoID = acoustic recording
files that were identified as a bat, but not assigned to a group or user-defined category. MLE =
maximum likelihood estimator.

Species ID in Description Examples Included in vetted Included in MLE
database data model input? data model input?
1-54, 86, 90 All single bat species MYSE, EPFU Yes Yes
IDs
66 NolD Unknown bat Yes Yes
species
55-64, 72-85,  All ambiguous mul- MYSEMYSO Yes No
88,94-119 tiple bat species IDS
67-71,92-93  Frequency categories, 40k, MYSP, HighF Yes No
general species codes
65, 89 Noise/not a bat Noise, NoBat No No
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detail in the Modeling Framework section). As such, we used MLE to balance inclusion of
as much data as possible while recognizing that call identifications assigned by autoclas-
sification software can be problematic (e.g., Goodwin and Gillam 2021).

To calculate MLE scores, we used the following process. First, for each unique combi-
nation of a species list, software brand, and software version, we calculated matrices with
true positive, false negative, false positive, and true negative rates based on the performance
tables for each software brand and version (as described in the previous paragraph) and the
species included in each species list. Second, we processed call file data from each unique
combination of a species list, software type, and software version through these matrices
and computed a closed-form likelihood ratio test for each nightly survey (represented by
a unique combination of a survey night, survey location, detector type, microphone type,
microphone height, software version, classifier/species list, and project ID). Finally, for any
surveys with P < 0.05, indicating likely presence of the Northern Long-eared Bat at high
confidence, we retained these detections, while survey events with P > 0.05 were converted
to non-detections (Fig. 1). For most surveys with auto IDs that were converted to non-
detections based on MLE scores, the total number of call files with auto IDs of Northern
Long-eared Bats was less than 3 (see Supplemental Figure S1B, available online at https://
eaglehill.us/urnaonline/suppl-files/nabr-018-Wray-s1.pdf).

Covariate extraction

Some covariates used in the analysis were previously attributed to the NABat sampling
grids and quadrants in prior USGS data releases (Gaulke et al. 2023, Talbert and Reichert
2018). Details on their geoprocessing can be found in their corresponding metadata. Given
the seasonal migrations of the Northern Long-eared Bat and catastrophic declines of winter
populations (Cheng et al. 2021), we included the presence of karst as a grid-cell level pre-
dictor. At the quadrant level, we used the proportion of the landscape that was classified as
wetlands to represent riparian and forest edge habitats that can provide key food resources
and movement corridors (Kaminski et al. 2020, Gorman et al. 2022).

In addition to these spatial covariates from the attributed grids, we used a previously
developed model of roost-site suitability (Inman et al. 2024), which was incorporated as a
predictor of occupancy at both spatial scales. The top 3 contributors to the roost-suitability
metric were canopy cover, accounting for 66.9% of the total contribution to the metric, fol-
lowed by annual temperature (11.5%), and landcover entropy (9.2%). The mean importance
of all covariates included in the roost-suitability metric is shown in Table 2 (refer to Inman
et al. [2024] for sources and geoprocessing details). This roost-suitability metric used counts
at roost emergences from the NABat database and from the U.S. Forest Service, which were
incorporated into a presence-background modeling approach that employed the Maximum
Entropy algorithm (Inman et al. 2024). We scaled all covariates with a “z-score” transforma-
tion (i.e., the sample mean, that is, the mean of all values for each covariate, was subtracted
from each value and this difference was then divided by the sample standard deviation).

We calculated a seasonal population connectivity metric for each grid cell and year, per
Udell et al. (2024, 2025), to link the potential spatiotemporal influence of abundance in the
winter range (i.e., at all known hibernacula, including natural and anthropogenic structures)
to expected occupancy in the summer range. Briefly, we calculated this metric for each grid
cell and year based on metapopulation connectivity (Moilanen and Hanski 2001). These
calculations were dependent on the pairwise distances between all documented winter hi-
bernacula and grid cells, the annual winter abundance of each hibernaculum, and the mean
winter-to-summer dispersal distance of the species of interest. We used an average dispersal
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distance of 89 km for the Northern Long-eared Bat (U.S. Fish and Wildlife Service 2022c).
The connectivity metric was centered (sample mean subtracted), but not scaled using z-scor-
ing for analyses. Little is known about hibernation sites used by Northern Long-eared Bats,
and in a small portion of their range, they apparently do not use subterranean hibernacula.
While limited to known hibernacula, the connectivity metric represented the expected link
between known winter colonies and the summer distribution over time, given the annual
abundance at each hibernaculum and the average migration distance of the species. We ex-
pected that this connectivity metric would have a positive influence on summer occupancy
probability and would capture the spatiotemporal influence of WNS impacts on known
winter colonies, as previously found for Northern Long-eared Bats (Udell et al. 2022a, b).

Climatic conditions can influence several aspects of detection probability, including bat
activity, a surveyor’s choice of capture nights, and even the speed at which an echolocation
call travels (Goerlitz 2018, Gorman et al. 2022). To account for these potential effects, we
accessed nightly weather data for each grid-cell centroid and sampling night from Daymet
(https://daymet.ornl.gov/), using the “daymetr” R package (Hufkens et al. 2018). We in-
cluded total precipitation, minimum air temperature, and day of year (scaled with a z-score
transformation) as nightly detection covariates, since they have been previously shown to
influence detection probability (e.g., de La Cruz et al. 2024; Udell et al. 2022a, b). To ac-
count for non-linear temporal patterns throughout each year, a quadratic effect of day of
year was also included as a detection covariate. Year was adjusted such that the first year of
the data was represented by 1, the second year represented by 2, and so on. Since a different
observation submodel was fit for each data type, all scaling of covariates was performed
separately for each data type. We also included a temporally auto-correlated year effect and
a post-volancy indicator (before or after 15 July) as detection covariates.

Modeling framework

We fitted a multi-scale, multi-method occupancy model to predict the occupancy prob-
ability (probability of presence) for Northern Long-eared Bats at the quadrant scale. We
chose this type of model to maximize the amount of data that could be included, since
some data from the NABat database were only available at the grid-cell scale, while other
data had a finer resolution allowing for assignment to a quadrant nested within a grid cell.
Multi-scale models yielded occupancy () at the larger (grid-cell) scale and availability (6)

Table 2. Covariates contributing to the suitability metric for maternity sites (Inman et al. 2024) of
the Northern Long-eared Bat (Myotis septentrionalis).

Covariate description Mean percent importance (%)
Tree canopy cover 66.9
Annual temperature 11.5
Landcover entropy 9.2
Distance to nearest building 3.7
Soil cation exchange capacity 2.9
Annual precipitation 2.2
Soil coarse fragments 2.2
Surface water density 1.4
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at the smaller (quadrant) scale, such that the product of these 2 outputs (y * 0) represented
occupancy probability at the smaller scale. We fitted our model as a function of environmen-
tal predictors at 2 different spatial resolutions (grid cells and quadrants). We accounted for
imperfect detection of 3 types of data (acoustic with an MLE protocol [Britzke et al. 2002],
acoustic with manual vetting, and capture data). Because both types of acoustic data used
a secondary approach (i.e., MLE or manual vetting) to remove suspected false-positives
before analysis, we did not consider false-positives in the occupancy model.

We modeled the occurrence state (z,,: presence/absence) of each grid cell and time period
t as:

z,, ~ Bernoulli (v, ),

with

logit(l/lit ) = x’i ﬁ + byear[t] + ﬂpaxt X pOStit + ﬂconnect * Si,year[t] s

where x'; was a matrix of site covariate values,  was a vector of covariate coefficients,
b,carry Was the temporal random effect for year y, post;, was an indicator for the post-volancy
season (after 15 July), and f,,, was the post-volancy effect coefficient. We assumed a
first-order autoregressive [AR(1)] process, [b, ] = AR(1) for years y = 1, - - - ¥, which is
the same formulation as Udell et al. (2025). The linear predictor included the connectivity
metric linking winter roost counts to the summer occupancy probability, similar to Udell et
al. (2025), with as the winter-to-summer connectivity covariate for each grid cell and year,
and as the covariate effect coefficient.

We used a multi-scale parameterization to represent the finer resolution of the nested
quadrants (denoted ¢) within a grid cell i, where:

4, ~ Bernoulli(9, x z;),

and logit(d,,) = w' a included covariates at the resolution of a quadrant g that explained local
availability or occurrence. Here, 6,, represented the probability of occurrence at the quad-
rant level, given occupancy at the grid-cell level (availability), and ¢,, was the occupancy
state at the quadrant level.

Observation submodels. For each observation “site-night” j, time period ¢, and location
(grid cell i or quadrant ¢), we included an observation model with imperfect detection, given
the latent true state (z, or g,,) and the detection probability p,,, using the following general
formulation: y;; ~ Bernoulli(p,; * z,) when data could only be reconciled at the grid cell,
and when data could be reconciled at the quadrant. We estimated a different detection prob-
ability for each data type (MLE, manually vetted, capture) at each spatial scale (grid cell
and quadrant), and we modeled p,, as a function of daily covariates (day of year, minimum
temperature, precipitation). For example, at the grid-cell scale we had:

on ™ ~ Bernoulli(p 7™ x z,),
yiU_Grid-vet - Bernoulli(panrid-vet X Zit)’
2,7 ~ Bernoulli(py; & x z,),
for acoustics using the MLE method (y,,%"*™*), acoustics using manual vetting (y,, "),
and using captures (y,,“"“). At the quadrant level, we had:

itj

Quad-mle

Vo ~ Bernoulli(p, ™ x ¢,,),
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Yy 2 ~ Bernoulli(p, 9 x ¢q,,),

Quad-cap : Grid-cap
Yoy Bernoulli(py X g0,

for acoustics using the MLE method (y,,*"™"), acoustics using manual vetting (y,, "),

and captures (yq,jQ”“d'cap). Thus, each of the response data types (3 methods, 2 spatial scales)
had a separate detection function that we modeled as function of site- and observation-level
covariates, also per Udell et al. (2025):

logit(py;") = 6,"+ 6, x Doy, + 8,°x Doy, + 85" x MinTemp,, + 6, X Precip,,

with J;" as the intercept for each response data type (x: Grid-mle, Grid-vet, Grid-cap, Quad-
mle, Quad-vet, Quad-cap), and ¢, d,", J5, d," as the covariate effects (coefficients) for each
response data type.

We fitted the model in JAGS using R and the packages “R2jags” and “jagsUI” (Kellner
2024, Su and Yajima 2024). Specifically, we ran 3 Markov Chain Monte Carlo (MCMC)
chains in parallel for 1000 adaptation iterations, followed by 15,000 total iterations (with
7500 used as burn-in). This procedure resulted in 22,500 samples from the joint posterior
of each parameter. We evaluated models based on Area Under the Curve (AUC), which
indicated classification accuracy of both presence and absence information.

We made predictions for occupancy probabilities for each grid cell and quadrant in the
Northern Long-eared Bat range (U.S. Fish and Wildlife Service 2022a) in the contiguous
United States. We report occupancy probability at the quadrant scale, which represents the
product (v * 0) of occupancy at the grid-cell scale (v) and availability at the quadrant scale
(8). We made these predictions for each year in the pre-volancy season. Outputs provided
predictions with uncertainty for each occupancy probability in each quadrant (which also
includes each corresponding grid cell) and year. We calculated occupancy probability from
2017 to 2022 in each quadrant by averaging the occupancy probability over these years for
each MCMC sample, which we then summarized as the mean and estimates of uncertainty
(the 95% Bayesian credible interval; hereafter referred to as the 95% CI).

Results

Model inputs

Our dataset comprised 153,013 unique survey nights from 4177 unique grid cells. Sta-
tionary acoustic surveys included 73,161 survey nights with manual vetting and 52,792
survey nights with MLE calculations, while captures involved 27,060 survey nights (Fig. 2).
Northern Long-eared Bats were detected in 9.4% of acoustic surveys and 11.8% of capture
surveys. All data were available at the grid-cell scale, and 68.4% of data were available at
quadrant resolution. We defined each “visit” as a unique survey night in a grid cell or quad-
rant in a year. Overall, sampled grid cells had a median of 7 total visits (interquartile range
[IQR] = 3-21 visits), with 81.0% of these grid cells having at least 1 revisit. For grid cells
with at least 1 revisit, 88.5% of revisits occurred on consecutive nights, with a median of 6
nights between the first and last visit (IQR = 2-20 nights).

Model evaluation

We assessed MCMC chains visually and quantitatively. The standard “fuzzy caterpillar”
trace plot indicated efficient sampling (Roy 2020) and R-hat values <1.1 also indicated that
MCMC chain convergence was reached. We calculated AUC for each location and year with
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MCMC samples of the latent state. The average unconditional (i.e., unconditional on the
latent occupancy state) AUC was 0.637 (95% CI = 0.628-0.645) for presence/absence at the
quadrant scale and 0.650 (0.641-0.657) at the grid-cell scale. These levels were considered
acceptable in their predictive abilities (Hosmer et al. 2013). The average conditional AUC
for predictions at the quadrant scale was 0.972 (0.969-0.975).

Occupancy and detection probability

Average detection probability was 0.53 (95% CI = 0.53-0.54) for MLE acoustic sur-
veys, 0.034 (0.032-0.037) for vetted acoustic surveys, and 0.22 (0.22-0.25) for capture
surveys. The average occupancy probability for our predictions at the quadrant scale was
0.38 (0.35-0.41; Fig. 3). At the grid-cell scale, the presence of karst, the post-volancy
indicator, the roost-suitability metric, and the connectivity metric had positive effects on
occupancy probability (Fig. 4A). At the quadrant scale, the proportion of wetlands and the
roost-suitability metric had a positive influence on availability, i.e., the probability of local
occupancy given presence at the grid-cell scale (Fig. 4A). Random intercepts for each year
indicated that occupancy probability was higher, on average, in earlier years (Fig. 4B).
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Figure 2. Sampling effort and coverage for stationary acoustic and capture records included as model
input for Myotis septentrionalis (Northern Long-eared Bat), from 2012 to 2022. Points represent
centroids of grid cells. Grid cells with survey effort, but no detections of Northern Long-eared Bats,
are shown in gray. Capture surveys include all capture events for any bat species. Stationary acoustic
records include surveys for which the Northern Long-eared Bat was included in the classifier. Spe-
cifically, acoustic records include manually vetted detections and auto ID detections retained after
maximum likelihood estimator (MLE) processing. For grid cells with detections of the Northern
Long-eared Bat, color represents the most recent detection year. For overlapping points, more recent
detections appear on top of less recent detections, and detections are shown on top of non-detections.
Periwinkle shaded area within the polygon indicates the target species range (U.S. Fish and Wildlife
Service 2022a) in the contiguous United States.
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For acoustic surveys at both scales, precipitation had a negative influence on detection
probability, while minimum temperature had a positive effect. Conversely, for capture sur-
veys, precipitation had a positive effect on detection probability, and minimum temperature
had a negative effect. We note that here, weather variables represented daily totals (for pre-
cipitation) and daily minima (for temperature) at the centroid of a grid cell or quadrant, not
necessarily the conditions at a specific site or within the duration of the survey. For all survey
types, day of year had a negative effect on detection probability, while quadratic day of year
was positive for acoustic surveys and negative for capture surveys (see Supplemental Table
S2, available online at https://eaglehill.us/urnaonline/suppl-files/nabr-018-Wray-s1.pdf).

Discussion

Overall, we found that despite the low detection probability associated with Northern
Long-eared Bats, the expansive amount of data available enabled prediction of occupancy
probability at a multi-scale resolution across their range within the contiguous United
States. As Northern Long-eared Bats, like many other bats, are mobile and can use multiple
roost trees in a season (e.g., Silvis et al. 2015, Thalken and Lacki 2018), incorporating
multiple data types in an occupancy modeling framework can yield insights on habitat
characteristics and landscape features beyond point locations for roosts. Since maternity
colonies of Northern Long-eared Bats often consist of complex networks (Gorman et al.
2023, Johnson et al. 2012), predictive modeling may also help inform estimates of habitat
use by these bats in areas that have not been or cannot be surveyed.

\Missrg

mean occupancy
probability

o

science for a changing world

Figure 3. Summer occupancy probabilities for Myotis septentrionalis (Northern Long-eared Bat), pre-
dicted at the quadrant scale and averaged over the years 2017-2022. Results are clipped to the species
range (U.S. Fish and Wildlife Service 2022a) in the contiguous United States. Color represents mean
occupancy probability. The product of occupancy at the larger (grid-cell) scale () and availability
(local occupancy given presence, 0) represents occupancy probability at the smaller (quadrant) scale.
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Figure 4. Summer occupancy model covariates for Myotis septentrionalis (Northern Long-eared Bat),
from 2012 to 2022. A) Estimates for predictors of occupancy (y) at the grid-cell scale and availabil-
ity (local occupancy given presence, 0) at the quadrant scale. B) Year intercepts with 95% and 80%
credible intervals (CI). The light green box highlights years for which occupancy probabilities were
predicted at the quadrant scale and averaged, as shown in Figure 3. For A and B, points represent mean
estimates, thinner black lines represent 95% credible intervals, and thicker green lines represent 80%

credible intervals.
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While autoclassification remains imperfect, by incorporating manually vetted station-
ary acoustic records, as well as capture data, this study provides updated, data-driven
predictions of where Northern Long-eared Bats are likely to be found. False-positive
occupancy models, which account for potential misidentifications, can be useful for im-
proving the accuracy of estimates from acoustic surveys (e.g., Rojas et al. 2019), but in a
Bayesian framework, these models are computationally intensive. Using MLE metrics for
acoustic surveys without manual vetting may help reduce the influence of unlikely detec-
tions, although this treatment can also result in the loss of some true detections and could
be improved by using other sampling designs or detection models (Irvine et al. 2022,
Specht et al. 2017). While we limited our predictions to the currently described range of
the Northern Long-eared Bat in the contiguous United States, we note that our data inputs
included several detection records from outside the published range (U.S. Fish and Wild-
life Service 2022a). For example, several stationary acoustic detections were reported
from western Wyoming, which included records without manual vetting, but that did pass
the MLE threshold for inclusion. In several other areas, Northern Long-eared Bats have
been identified by auto ID, but without validation via captures. Further surveys of these
areas or retrospective manual vetting could help improve the quality of data inputs for
these types of models and our understanding of the current range of this species.

The covariates used in the model were statistically meaningful as predictors and bio-
logically plausible, given the ecology of this species and findings from previous occupan-
cy models based on the NABat database (Udell et al. 2022a, b). For example, the roost-
suitability metric, which was primarily driven by canopy cover, had a strong positive
effect at both spatial scales, which is consistent with habitat use and roosting preferences
of Northern Long-eared Bats (e.g., Broders et al. 2006, Foster and Kurta 1999, Lacki et
al. 2009). Studies on other types of animals have used predicted habitat-suitability layers
from presence-background models as inputs for occupancy models (e.g., da Silva Neto et
al. 2020), although these approaches have not been frequently used for bats. Future use
of habitat-suitability layers as occupancy modeling covariates may help expedite com-
putationally intensive modeling efforts by consolidating important predictor covariates.
Rather than perform intensive model selection or comparison, we selected other covari-
ates a priori based on the ecology of Northern Long-eared Bats. While not incorporated
into the roost-suitability metric, wetlands and riparian areas can provide suitable habitat
for this species in certain areas (Foster and Kurta 1999; Gorman et al. 2022; Jordan 2020;
Udell et al. 2022a, b). Similarly, by using a seasonal connectivity metric, our model ac-
counts for the presence of nearby hibernacula that may influence Northern Long-eared
Bat summer distributions (Hoff et al. 2024). Expansion of model comparisons, or the
incorporation of different sets of covariates, could yield improved predictive power. In-
deed, while our conditional AUC scores (the probability of presence at the quadrant scale,
given presence at the grid-cell scale) were high, the unconditional scores (the probability
of occupancy without considering latent random effects) were considered acceptable, but
could be improved with additional data.

Although our model treats separate stationary acoustic surveys (i.e., any survey with
a unique combination of location, date, project, and equipment) as separate observers, we
did not include specific parameters to account for potential heterogeneity between observ-
ers. Factors such as equipment type—like models of acoustic detectors, microphone types,
software versions, and the condition of recording equipment—may affect detection prob-
ability within specific years, and advancements in autoclassification technology could also
influence detection probabilities over time. Though we did not account for these potential
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effects, our results showed that later years generally had lower occupancy probabilities,
which is consistent with other studies that described declining populations of Northern
Long-eared Bats (e.g., Cheng et al. 2021; Udell et al. 2022a, b; White et al. 2022). Since our
primary focus was estimating the recent (2017-2022) distribution of Northern Long-eared
Bats, we do not over-interpret this declining trend. While previous work has documented
population declines, the observed year effects in this study could be influenced by changes
in survey effort associated with the geographic spread of white-nose syndrome. As such,
follow-up studies, which may incorporate more nuanced parameterization of spatiotemporal
heterogeneity in observation quality and/or observation effort (e.g., Kery et al. 2010), may
be warranted for updating estimates on population trends of Northern Long-eared Bats.

Our model (Fig. 3) predicted higher occupancy probability in areas where Northern
Long-eared Bats have been persisting, including North Carolina (Jordan 2020), central
Pennsylvania (Lewis et al. 2022), and some coastal regions of New England (Hoff et al.
2024). Though some areas with high predicted occupancy probability, such as central New
York state, were not strongly represented by available data, our results suggest that addi-
tional survey effort in these regions is warranted and could provide further ground-truthing
for the chosen modeling approach. Our study also indicated a patch of high occupancy
probability in northeastern Wyoming and western South Dakota, a region that includes
Black Hills National Forest and the Bear Lodge Mountains. Northern Long-eared Bats have
been captured in this patch and nearby locations (Alston et al. 2019, Cryan et al. 2000).
The aforementioned patch appears somewhat isolated, which could reflect a lack of survey
data in areas between this patch and the other parts of the species’ range with higher oc-
cupancy probability. Although some portions of the Northern Long-eared Bat range remain
underrepresented in terms of data availability, extensive sampling efforts covered a large
geographic scale and included a broad suite of habitat conditions in our study. While it is
possible that unmeasured climate or landcover variables could be unique among unsampled
grid cells, the ranges of values for the covariates included in our model did not differ sub-
stantially between sampled and unsampled grid cells where predictions were made. Our
scope of inference was confined to the continental United States, though the distribution
of the Northern Long-eared Bat continues northward and westward into Canada, and thus,
additional areas of high occupancy may not be captured.

Occupancy modeling is not without its caveats, and like all models, the quality of model
outputs is inherently linked to the quality of data inputs. Acoustic monitoring is imperfect,
even for manually vetted records. Manually vetted records may be biased if, for example,
vetters are highly conservative in downgrading auto IDs of Northern Long-eared Bat to
“Mpyotis spp.” or other ambiguous classification, which may also account for the low av-
erage detection probability in this study. Similarly, auto IDs without manual vetting may
retain false positives due to ambiguity in echolocation calls. By applying an MLE threshold,
we attempted to reduce the potential influence of false positives. However, this data filtering
also resulted in loss of some data that could not be processed through MLE due to a lack of
appropriate performance tables. Future changes to the NABat database, such as allowing
for the inclusion of automatically generated MLE scores from other classification software,
may provide additional options for data inclusion in modeling efforts. Incorporating addi-
tional data, especially in areas with high predicted occupancy probability without existing
surveys, could further improve the accuracy of future predictions.

Ground-truthing model estimates could further validate our results, highlighting the
utility of the NABat database and the improved ability to test model predictions following
the incorporation of additional data. We note that our multi-scale approach correctly ac-
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counts for spatial autocorrelation at the grid-cell scale when modeling the quadrant scale.
However, given common computational limitations in occupancy modeling, we did not
attempt to accommodate additional autocorrelation beyond this, which, if present, could
lead to over-precise parameter estimates, but is unlikely to result in bias. The basic as-
sumptions of occupancy modeling for mobile species (e.g., MacKenzie et al. 2006) were
reasonable for our study design and system for the following reasons: the interpretation
of occupancy as use of a grid-cell quadrant by at least 1 individual, the assumption of
closure at the species level (i.e., the occupancy state as defined above does not change),
and the short distances (with respect to grid cell quadrants) of the general within-season
movements of the Northern Long-eared Bat.

On a global scale, narrow-space foraging, low-wing aspect ratio bat species (which often
includes species reliant on forest interior habitat) face many threats (Jones et al. 2003, Safi
and Kerth 2004). As these bats can be difficult to capture with standard techniques (e.g.,
Tanshi et al. 2022) or challenging to detect with acoustic methods (Froidevaux et al. 2014,
Patriquin et al. 2003), future occupancy modeling for other forest-associated species may
require finding creative solutions for coping with low detection probabilities. Despite the
challenges associated with predicting occupancy for rare, cryptic species, there is a need
to quantify the distribution of these species beyond direct observations. Our analysis high-
lights the utility of centralized databases that house multiple data types, which can be used
to improve data-driven estimates of where species are likely to occur.
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