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syndrome. © Jill Utrup/USFWS.
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Multi-scale Predictors of Northern Long-eared Bat 
(Myotis septentrionalis) Occupancy in the United States

Amy K. Wray1,*, Bradley J. Udell1, Helen T. Davis1, Richard D. Inman1, Bennet T. 
Lohre1, Haley B. Price1, Jonathan D. Reichard2, Andrea N. Schuhmann1, Bethany 
R. Straw1, Frank C. Tousley1, Jill Utrup2, Ashton Wiens3, and Brian E. Reichert1 

Abstract - Historically, Myotis septentrionalis (Northern Long-eared Bat) was among the most 
common forest-interior species in North America. Largely due to high mortality from white-nose 
syndrome, this species has experienced severe population declines across its range. To create an up-
dated species distribution map representing summer occupancy probabilities from 2017 to 2022, we 
integrated stationary acoustic data with live-capture data from the database of the North American Bat 
Monitoring Program into a multi-scale, multi-method occupancy modeling framework. Our results 
provide data-driven predictions with quantified uncertainty for summer occupancy probabilities for 
Northern Long-eared Bats at 2 spatial scales across the range of the species, while also accounting for 
inherent observation biases (e.g., imperfect detection).

Introduction

	 Efficient wildlife management requires understanding where the species of interest 
likely occurs. Predicting occurrence for populations in decline is challenging—even more 
so for species that are small, cryptic, or highly mobile (Emmet et al. 2021; MacKenzie et 
al. 2002, 2005). For species that are rare and challenging to survey, traditional modeling 
methods often require extensive data collection and intensive modeling frameworks (Bal-
antic and Donovan 2019, MacKenzie et al. 2002, Nichols et al. 2008). Multi-scale models 
can offer solutions for predicting the occurrence of species with low detection probability 
by using sampling units to explicitly account for both the spatial (availability bias) and 
temporal (perception bias) components of imperfect detection (Nichols et al. 2008). Multi-
scale and multi-method models allow for the incorporation of data collected at various 
spatial scales or using different methods, thereby maximizing the amount of information 
used to calibrate a model. Some understanding of the resources that govern the distribution 
of a species is also required to make predictions that are ecologically meaningful. Adding 
this valuable context can be achieved through the inclusion of model covariates informed 
by the natural history of a species. 
	 Myotis septentrionalis (Trouessart) (Northern Long-eared Bat) is widely distributed 
across North America (U.S. Fish and Wildlife Service 2022a). Compared to many other My-
otis, this small-bodied species has low wing loading and is adapted to moving and foraging 
in forest understories (Caceres and Barclay 2000). Since Northern Long-eared Bats forage 
by aerial hawking in cluttered environments, as well as by gleaning prey, their search-phase 
echolocation calls are quiet and generally higher in frequency, steeper in slope, and shorter 

1United States Geological Survey, Fort Collins Science Center, 2150 Centre Avenue Building C, Fort 
Collins, CO 80526. 2United States Fish and Wildlife Service, Ecological Services, 300 Westgate 
Center Drive, Hadley, MA 01035. 3United States Geological Survey, Geology, Energy and Minerals 
Science Center, 12201 Sunrise Valley Drive, Reston, VA 20192. *Corresponding author - awray@
usgs.gov.
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in duration compared to sympatric species, although these characteristics can shift depend-
ing on the vegetation structure present in their environment (Broders et al. 2004, Faure et al. 
1993). Though previously common throughout their range, recent capture rates of Northern 
Long-eared Bats are low (Rojas et al. 2019), and these bats can be difficult to observe in 
hibernacula or distinguish from other Myotis due to their preference for hibernating in deep 
crevices or cracks (Raesly and Gates 1987). Since the arrival of the fungal disease white-
nose syndrome (WNS) in North America, this species has been one of the most severely 
afflicted, with population declines ranging from 97 to 100% (Cheng et al. 2021, Frick et 
al. 2015). The severe declines have led to the species being classified as endangered in the 
United States (U.S. Fish and Wildlife Service 2022b).
	 Strategic modelling efforts can support conservation and management decisions for 
wide-ranging species with varying data availability, as is the case for Northern Long-eared 
Bats. For other taxa, centralized systems for managing large datasets, such as eBird (Neate-
Clegg et al. 2020) and the Global Biodiversity Information Facility (Svenningsen and 
Schigel 2024), have facilitated population-monitoring on a broader scale than previously 
possible. However, for many bats, standardized landscape-level data that could enable these 
types of analyses have been limited until recently. Largely due to the adoption of acoustic-
monitoring techniques, the quantity of available monitoring data on bats has increased sub-
stantially (Sugai et al. 2019). The North American Bat Monitoring Program (NABat) was 
created, in part, to expand acoustic and non-acoustic data collection for bats (Loeb et al. 
2015, Reichert et al. 2021). NABat also aims to increase accessibility to those data to inform 
timely decisions for managing bats (Neece et al. 2019). Although the inherent shortcomings 
of acoustic autoclassification (e.g., Lemen et al. 2015, Russo and Voigt 2016) necessitate 
either reduction of false-positive detections (Britzke et al. 2002) or explicit modeling of 
false positives (e.g., Irvine et al. 2022), the large amount of data compiled through the 
NABat database provides unique opportunities for improved quantification of occupancy 
probabilities, even for species that are rare or difficult to detect. Herein, we used both 
capture records and data from stationary acoustic monitoring to create an updated map of 
occupancy probabilities across the range of the Northern Long-eared Bat in the contiguous 
United States. Overall, our results provide estimates of predicted occupancy probabilities 
for Northern Long-eared Bats that could help inform future management objectives.

Methods

Data sources
	 The NABat sampling scheme is based on grid cells that are 10 kilometers (km) by 10 
km (hereafter called grid cells), each of which includes 4 nested quadrants of 5 km by 5 
km (hereafter called quadrants). Model inputs included data collected in summer (1 May 
through 31 August) from 2012 through 2022, with predictions made only for the pre-volan-
cy season (1 May through 15 July; Loeb et al. 2015). We performed data processing, quality 
inspection, and formatting in R version 4.3.2 (R Core Team 2023) with the specific packages 
“tidyverse” and “sf” (Pebesma 2018, Wickham et al. 2019). For clarity, we have shown the 
general workflow for data inclusion in the occupancy model in Figure 1. We describe the 
processing steps below, and more details appear in the data release of model outputs associ-
ated with this manuscript (Wray et al. 2024).
	 Data sources included nightly detection and non-detection records from captures and 
stationary acoustic surveys (hereafter “acoustic surveys”; Fig. 1). Capture records were 
exported from the NABat database as nightly summaries (i.e., the number of captures per 
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species for each night of a survey). From these records, we imputed zeroes (non-detections) 
for surveys if other bats were captured but Northern Long-eared Bats were not caught. 
Acoustic records were exported from the NABat database at the level of the call file (i.e., 
each acoustic recording and its assigned identification) for all records using a species list 
(i.e., a classifier) that included the Northern Long-eared Bat. 
	 For acoustic survey data with manual vetting (identifications manually assigned by ex-
perts), we used the manually provided identification to determine detections and non-detec-
tions. For any call files that underwent manual vetting within the same batch of recordings, 
with “batch” defined as a unique combination of site, night, project, processing software, 
species list, and recording equipment, we used the identities assigned to the vetted records 
instead of relying on any automatic identifications generated by classification software 
(hereafter “auto IDs”, Fig. 1). For example, if a subset of acoustic files in a batch received 
manual vetting, we excluded any remaining files from that batch that were not manually 
reviewed (Fig. 1). For files with manual vetting, we considered all software types (including 
files that did not list a software type) acceptable. Similarly, we considered files that were 
ambiguously identified only as “high frequency”, “low frequency”, or “Myotis spp.” (Table 
1) to represent a nontarget species (i.e., any bat besides the Northern Long-eared Bat).
	 For acoustic survey data from batches without any manual vetting, we used a maximum 
likelihood estimator (MLE; Britzke et al. 2002), which represents an efficient approach to 
maximize the amount and quality of the data inputs for our model. This approach can be use-
ful for reducing potential false positives. Specifically, the likelihood of a species’ presence 

Figure 1. Decision flowchart for inclusion of stationary acoustic and capture data. Zeroes represent 
non-detections, while ones represent detections. MYSE = Myotis septentrionalis (Northern Long-
eared Bat). NABat = North American Bat Monitoring Program. LRT = likelihood ratio test. MLE = 
maximum likelihood estimator. NoID = acoustic recording files that were identified as a bat, but not 
assigned to a group or user-defined category.
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can be calculated depending on 3 factors––the specificity and sensitivity of a particular type 
of autoclassification software, the potential species included in the autoclassification spe-
cies list, and the total number of auto IDs for a target species compared to all other species. 
Only certain software brands and versions had available performance tables that included 
the number (rather than the proportion or percentage) of calls that were classified as each 
species, which is necessary to manually calculate MLE metrics (Fig. 1). In our dataset, all 
versions of Kaleidoscope Pro (Wildlife Acoustics, Maynard, MA) with the version number 
listed had performance tables available that were acceptable for MLE calculation. Most call 
files from acoustic surveys without manual vetting used a software type that was compatible 
with manual calculation of MLE scores (see Supplemental Figure S1A, available online at 
https://eaglehill.us/urnaonline/suppl-files/nabr-018-Wray-s1.pdf). 

MLE calculation for auto IDs from stationary acoustics without manual vetting
	 Performance tables for each software brand and version included individual species 
and the category “NoID”, which represented an estimation of all files that were processed 
through autoclassification software but not identified to species. Since these tables did not 
include ambiguous groupings, like high frequency, low frequency, or Myotis spp. (Table 1), 
we excluded files with auto IDs in these categories. All species (besides Northern Long-
eared Bats) and NoIDs were then aggregated into a category of “nontarget species.” Ap-
proaches using MLE are imperfect. For example, true detections may be converted to false 
negatives, which may be more common when there are few call files from a target species 
or when true detections represent a low proportion of call files within the same frequency 
groups (Ford et al. 2024). For our approach, false negatives (but not false positives) could 
be accounted for by modeling the observation process (i.e., detection, described in further 

Table 1. Inclusion of manual and auto ID (identifications automatically assigned by classification 
software) categories in model input used to create an updated bat species distribution map. MYSE 
= Northern Long-eared Bat (Myotis septentrionalis). EPFU = Big Brown Bat (Eptesicus fuscus). 
MYSEMYSO = ambiguous ID assigned as Northern Long-eared Bat or Indiana Bat (Myotis 
sodalis). 40k = various species with pulses that have a minimum frequency of approximately 
35–45 kHz. HighF = various species with pulses having a minimum frequency higher than 30kHz. 
MYSP = unknown species in the genus Myotis. NoBat = not a bat. NoID = acoustic recording 
files that were identified as a bat, but not assigned to a group or user-defined category. MLE = 
maximum likelihood estimator.

Species ID in 
database

Description Examples Included in vetted 
data model input?

Included in MLE 
data model input?

1–54, 86, 90 All single bat species 
IDs

MYSE, EPFU Yes Yes

66 NoID Unknown bat 
species

Yes Yes

55–64, 72–85, 
88, 94–119

All ambiguous mul-
tiple bat species IDS

MYSEMYSO Yes No

67–71, 92–93 Frequency categories, 
general species codes

40k, MYSP, HighF Yes No

65, 89 Noise/not a bat Noise, NoBat No No
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detail in the Modeling Framework section). As such, we used MLE to balance inclusion of 
as much data as possible while recognizing that call identifications assigned by autoclas-
sification software can be problematic (e.g., Goodwin and Gillam 2021).
	 To calculate MLE scores, we used the following process. First, for each unique combi-
nation of a species list, software brand, and software version, we calculated matrices with 
true positive, false negative, false positive, and true negative rates based on the performance 
tables for each software brand and version (as described in the previous paragraph) and the 
species included in each species list. Second, we processed call file data from each unique 
combination of a species list, software type, and software version through these matrices 
and computed a closed-form likelihood ratio test for each nightly survey (represented by 
a unique combination of a survey night, survey location, detector type, microphone type, 
microphone height, software version, classifier/species list, and project ID). Finally, for any 
surveys with P < 0.05, indicating likely presence of the Northern Long-eared Bat at high 
confidence, we retained these detections, while survey events with P ≥ 0.05 were converted 
to non-detections (Fig. 1). For most surveys with auto IDs that were converted to non-
detections based on MLE scores, the total number of call files with auto IDs of Northern 
Long-eared Bats was less than 3 (see Supplemental Figure S1B, available online at https://
eaglehill.us/urnaonline/suppl-files/nabr-018-Wray-s1.pdf). 

Covariate extraction
	 Some covariates used in the analysis were previously attributed to the NABat sampling 
grids and quadrants in prior USGS data releases (Gaulke et al. 2023, Talbert and Reichert 
2018). Details on their geoprocessing can be found in their corresponding metadata. Given 
the seasonal migrations of the Northern Long-eared Bat and catastrophic declines of winter 
populations (Cheng et al. 2021), we included the presence of karst as a grid-cell level pre-
dictor. At the quadrant level, we used the proportion of the landscape that was classified as 
wetlands to represent riparian and forest edge habitats that can provide key food resources 
and movement corridors (Kaminski et al. 2020, Gorman et al. 2022). 
	 In addition to these spatial covariates from the attributed grids, we used a previously 
developed model of roost-site suitability (Inman et al. 2024), which was incorporated as a 
predictor of occupancy at both spatial scales. The top 3 contributors to the roost-suitability 
metric were canopy cover, accounting for 66.9% of the total contribution to the metric, fol-
lowed by annual temperature (11.5%), and landcover entropy (9.2%). The mean importance 
of all covariates included in the roost-suitability metric is shown in Table 2 (refer to Inman 
et al. [2024] for sources and geoprocessing details). This roost-suitability metric used counts 
at roost emergences from the NABat database and from the U.S. Forest Service, which were 
incorporated into a presence-background modeling approach that employed the Maximum 
Entropy algorithm (Inman et al. 2024). We scaled all covariates with a “z-score” transforma-
tion (i.e., the sample mean, that is, the mean of all values for each covariate, was subtracted 
from each value and this difference was then divided by the sample standard deviation). 
	 We calculated a seasonal population connectivity metric for each grid cell and year, per 
Udell et al. (2024, 2025), to link the potential spatiotemporal influence of abundance in the 
winter range (i.e., at all known hibernacula, including natural and anthropogenic structures) 
to expected occupancy in the summer range. Briefly, we calculated this metric for each grid 
cell and year based on metapopulation connectivity (Moilanen and Hanski 2001). These 
calculations were dependent on the pairwise distances between all documented winter hi-
bernacula and grid cells, the annual winter abundance of each hibernaculum, and the mean 
winter-to-summer dispersal distance of the species of interest. We used an average dispersal 
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distance of 89 km for the Northern Long-eared Bat (U.S. Fish and Wildlife Service 2022c). 
The connectivity metric was centered (sample mean subtracted), but not scaled using z-scor-
ing for analyses. Little is known about hibernation sites used by Northern Long-eared Bats, 
and in a small portion of their range, they apparently do not use subterranean hibernacula. 
While limited to known hibernacula, the connectivity metric represented the expected link 
between known winter colonies and the summer distribution over time, given the annual 
abundance at each hibernaculum and the average migration distance of the species. We ex-
pected that this connectivity metric would have a positive influence on summer occupancy 
probability and would capture the spatiotemporal influence of WNS impacts on known 
winter colonies, as previously found for Northern Long-eared Bats (Udell et al. 2022a, b).
	 Climatic conditions can influence several aspects of detection probability, including bat 
activity, a surveyor’s choice of capture nights, and even the speed at which an echolocation 
call travels (Goerlitz 2018, Gorman et al. 2022). To account for these potential effects, we 
accessed nightly weather data for each grid-cell centroid and sampling night from Daymet 
(https://daymet.ornl.gov/), using the “daymetr” R package (Hufkens et al. 2018). We in-
cluded total precipitation, minimum air temperature, and day of year (scaled with a z-score 
transformation) as nightly detection covariates, since they have been previously shown to 
influence detection probability (e.g., de La Cruz et al. 2024; Udell et al. 2022a, b). To ac-
count for non-linear temporal patterns throughout each year, a quadratic effect of day of 
year was also included as a detection covariate. Year was adjusted such that the first year of 
the data was represented by 1, the second year represented by 2, and so on. Since a different 
observation submodel was fit for each data type, all scaling of covariates was performed 
separately for each data type. We also included a temporally auto-correlated year effect and 
a post-volancy indicator (before or after 15 July) as detection covariates.

Modeling framework
	 We fitted a multi-scale, multi-method occupancy model to predict the occupancy prob-
ability (probability of presence) for Northern Long-eared Bats at the quadrant scale. We 
chose this type of model to maximize the amount of data that could be included, since 
some data from the NABat database were only available at the grid-cell scale, while other 
data had a finer resolution allowing for assignment to a quadrant nested within a grid cell. 
Multi-scale models yielded occupancy (ψ) at the larger (grid-cell) scale and availability (θ) 

Table 2. Covariates contributing to the suitability metric for maternity sites (Inman et al. 2024) of 
the Northern Long-eared Bat (Myotis septentrionalis).

Covariate description Mean percent importance (%)

Tree canopy cover 66.9
Annual temperature 11.5
Landcover entropy 9.2

Distance to nearest building 3.7
Soil cation exchange capacity 2.9

Annual precipitation 2.2
Soil coarse fragments 2.2
Surface water density 1.4
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at the smaller (quadrant) scale, such that the product of these 2 outputs (ψ * θ) represented 
occupancy probability at the smaller scale. We fitted our model as a function of environmen-
tal predictors at 2 different spatial resolutions (grid cells and quadrants). We accounted for 
imperfect detection of 3 types of data (acoustic with an MLE protocol [Britzke et al. 2002], 
acoustic with manual vetting, and capture data). Because both types of acoustic data used 
a secondary approach (i.e., MLE or manual vetting) to remove suspected false-positives 
before analysis, we did not consider false-positives in the occupancy model. 
	 We modeled the occurrence state (zit : presence/absence) of each grid cell and time period 
t as:

 zit  ~ Bernoulli (ψit ), 
with 

logit(ψit ) = x'i β + byear[t] + βpost × postit + βconnect * Si,year[t] ,

where x'i  was a matrix of site covariate values, β was a vector of covariate coefficients, 
byear[t]  was the temporal random effect for year y, postit  was an indicator for the post-volancy 
season (after 15 July), and βpost  was the post-volancy effect coefficient. We assumed a 
first-order autoregressive [AR(1)] process, [by ] = AR(1) for years y = 1, · · · Y, which is 
the same formulation as Udell et al. (2025). The linear predictor included the connectivity 
metric linking winter roost counts to the summer occupancy probability, similar to Udell et 
al. (2025), with  as the winter-to-summer connectivity covariate for each grid cell and year, 
and  as the covariate effect coefficient.
	 We used a multi-scale parameterization to represent the finer resolution of the nested 
quadrants (denoted q) within a grid cell i, where:

qqt  ~ Bernoulli(θqt × zit ),

and logit(θqt) = w' α included covariates at the resolution of a quadrant q that explained local 
availability or occurrence. Here, θqt  represented the probability of occurrence at the quad-
rant level, given occupancy at the grid-cell level (availability), and qqt  was the occupancy 
state at the quadrant level. 
	 Observation submodels. For each observation “site-night” j, time period t, and location 
(grid cell i or quadrant q), we included an observation model with imperfect detection, given 
the latent true state (zit  or qqt) and the detection probability pitj, using the following general 
formulation: yitj ~ Bernoulli(pitj × zit) when data could only be reconciled at the grid cell, 
and  when data could be reconciled at the quadrant. We estimated a different detection prob-
ability for each data type (MLE, manually vetted, capture) at each spatial scale (grid cell 
and quadrant), and we modeled pitj as a function of daily covariates (day of year, minimum 
temperature, precipitation). For example, at the grid-cell scale we had:

yitj
Grid-mle ~ Bernoulli(pitj

Grid-mle × zit),
yitj

Grid-vet ~ Bernoulli(pitj
Grid-vet × zit),

yitj
Grid-cap ~ Bernoulli(pitj

Grid-cap × zit),

for acoustics using the MLE method (yitj
Grid-mle), acoustics using manual vetting (yitj

Grid-vet), 
and using captures (yitj

Grid-cap ). At the quadrant level, we had:

yqtj
Quad-mle ~ Bernoulli(pqtj

Quad-mle × qqt),
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yqtj
Quad-vet ~ Bernoulli(pqtj

Grid-vet × qqt),
yqtj

Quad-cap ~ Bernoulli(pqtj
Grid-cap × qqt),

 for acoustics using the MLE method (yqtj
Quad-mle), acoustics using manual vetting (yqtj

Quad-vet), 
and captures (yqtj

Quad-cap). Thus, each of the response data types (3 methods, 2 spatial scales) 
had a separate detection function that we modeled as function of site- and observation-level 
covariates, also per Udell et al. (2025):

logit(pitj
x) = δ0

x + δ1
x × Doyitj + δ2

x × Doyitj
2 + δ3

x × MinTempitj + δ4
x × Precipitj,

with δ0
x  as the intercept for each response data type (x: Grid-mle, Grid-vet, Grid-cap, Quad-

mle, Quad-vet, Quad-cap), and δ1
x, δ2

x, δ3
x, δ4

x as the covariate effects (coefficients) for each 
response data type. 
	 We fitted the model in JAGS using R and the packages “R2jags” and “jagsUI” (Kellner 
2024, Su and Yajima 2024). Specifically, we ran 3 Markov Chain Monte Carlo (MCMC) 
chains in parallel for 1000 adaptation iterations, followed by 15,000 total iterations (with 
7500 used as burn-in). This procedure resulted in 22,500 samples from the joint posterior 
of each parameter. We evaluated models based on Area Under the Curve (AUC), which 
indicated classification accuracy of both presence and absence information. 
	 We made predictions for occupancy probabilities for each grid cell and quadrant in the 
Northern Long-eared Bat range (U.S. Fish and Wildlife Service 2022a) in the contiguous 
United States. We report occupancy probability at the quadrant scale, which represents the 
product (ψ * θ) of occupancy at the grid-cell scale (ψ) and availability at the quadrant scale 
(θ). We made these predictions for each year in the pre-volancy season. Outputs provided 
predictions with uncertainty for each occupancy probability in each quadrant (which also 
includes each corresponding grid cell) and year. We calculated occupancy probability from 
2017 to 2022 in each quadrant by averaging the occupancy probability over these years for 
each MCMC sample, which we then summarized as the mean and estimates of uncertainty 
(the 95% Bayesian credible interval; hereafter referred to as the 95% CI).

Results

Model inputs
	 Our dataset comprised 153,013 unique survey nights from 4177 unique grid cells. Sta-
tionary acoustic surveys included 73,161 survey nights with manual vetting and 52,792 
survey nights with MLE calculations, while captures involved 27,060 survey nights (Fig. 2). 
Northern Long-eared Bats were detected in 9.4% of acoustic surveys and 11.8% of capture 
surveys. All data were available at the grid-cell scale, and 68.4% of data were available at 
quadrant resolution. We defined each “visit” as a unique survey night in a grid cell or quad-
rant in a year. Overall, sampled grid cells had a median of 7 total visits (interquartile range 
[IQR] = 3–21 visits), with 81.0% of these grid cells having at least 1 revisit. For grid cells 
with at least 1 revisit, 88.5% of revisits occurred on consecutive nights, with a median of 6 
nights between the first and last visit (IQR = 2–20 nights).

Model evaluation
	 We assessed MCMC chains visually and quantitatively. The standard “fuzzy caterpillar” 
trace plot indicated efficient sampling (Roy 2020) and R-hat values <1.1 also indicated that 
MCMC chain convergence was reached. We calculated AUC for each location and year with 
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MCMC samples of the latent state. The average unconditional (i.e., unconditional on the 
latent occupancy state) AUC was 0.637 (95% CI = 0.628–0.645) for presence/absence at the 
quadrant scale and 0.650 (0.641–0.657) at the grid-cell scale. These levels were considered 
acceptable in their predictive abilities (Hosmer et al. 2013). The average conditional AUC 
for predictions at the quadrant scale was 0.972 (0.969–0.975).

Occupancy and detection probability
	 Average detection probability was 0.53 (95% CI = 0.53–0.54) for MLE acoustic sur-
veys, 0.034 (0.032–0.037) for vetted acoustic surveys, and 0.22 (0.22–0.25) for capture 
surveys. The average occupancy probability for our predictions at the quadrant scale was 
0.38 (0.35–0.41; Fig. 3). At the grid-cell scale, the presence of karst, the post-volancy 
indicator, the roost-suitability metric, and the connectivity metric had positive effects on 
occupancy probability (Fig. 4A). At the quadrant scale, the proportion of wetlands and the 
roost-suitability metric had a positive influence on availability, i.e., the probability of local 
occupancy given presence at the grid-cell scale (Fig. 4A). Random intercepts for each year 
indicated that occupancy probability was higher, on average, in earlier years (Fig. 4B). 

Figure 2. Sampling effort and coverage for stationary acoustic and capture records included as model 
input for Myotis septentrionalis (Northern Long-eared Bat), from 2012 to 2022. Points represent 
centroids of grid cells. Grid cells with survey effort, but no detections of Northern Long-eared Bats, 
are shown in gray. Capture surveys include all capture events for any bat species. Stationary acoustic 
records include surveys for which the Northern Long-eared Bat was included in the classifier. Spe-
cifically, acoustic records include manually vetted detections and auto ID detections retained after 
maximum likelihood estimator (MLE) processing. For grid cells with detections of the Northern 
Long-eared Bat, color represents the most recent detection year. For overlapping points, more recent 
detections appear on top of less recent detections, and detections are shown on top of non-detections. 
Periwinkle shaded area within the polygon indicates the target species range (U.S. Fish and Wildlife 
Service 2022a) in the contiguous United States. 
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	 For acoustic surveys at both scales, precipitation had a negative influence on detection 
probability, while minimum temperature had a positive effect. Conversely, for capture sur-
veys, precipitation had a positive effect on detection probability, and minimum temperature 
had a negative effect. We note that here, weather variables represented daily totals (for pre-
cipitation) and daily minima (for temperature) at the centroid of a grid cell or quadrant, not 
necessarily the conditions at a specific site or within the duration of the survey. For all survey 
types, day of year had a negative effect on detection probability, while quadratic day of year 
was positive for acoustic surveys and negative for capture surveys (see Supplemental Table 
S2, available online at https://eaglehill.us/urnaonline/suppl-files/nabr-018-Wray-s1.pdf).

Discussion

	 Overall, we found that despite the low detection probability associated with Northern 
Long-eared Bats, the expansive amount of data available enabled prediction of occupancy 
probability at a multi-scale resolution across their range within the contiguous United 
States. As Northern Long-eared Bats, like many other bats, are mobile and can use multiple 
roost trees in a season (e.g., Silvis et al. 2015, Thalken and Lacki 2018), incorporating 
multiple data types in an occupancy modeling framework can yield insights on habitat 
characteristics and landscape features beyond point locations for roosts. Since maternity 
colonies of Northern Long-eared Bats often consist of complex networks (Gorman et al. 
2023, Johnson et al. 2012), predictive modeling may also help inform estimates of habitat 
use by these bats in areas that have not been or cannot be surveyed. 

Figure 3. Summer occupancy probabilities for Myotis septentrionalis (Northern Long-eared Bat), pre-
dicted at the quadrant scale and averaged over the years 2017–2022. Results are clipped to the species 
range (U.S. Fish and Wildlife Service 2022a) in the contiguous United States. Color represents mean 
occupancy probability. The product of occupancy at the larger (grid-cell) scale (ψ) and availability 
(local occupancy given presence, θ) represents occupancy probability at the smaller (quadrant) scale.
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Figure 4. Summer occupancy model covariates for Myotis septentrionalis (Northern Long-eared Bat), 
from 2012 to 2022. A) Estimates for predictors of occupancy (ψ) at the grid-cell scale and availabil-
ity (local occupancy given presence, θ) at the quadrant scale. B) Year intercepts with 95% and 80% 
credible intervals (CI). The light green box highlights years for which occupancy probabilities were 
predicted at the quadrant scale and averaged, as shown in Figure 3. For A and B, points represent mean 
estimates, thinner black lines represent 95% credible intervals, and thicker green lines represent 80% 
credible intervals.
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	 While autoclassification remains imperfect, by incorporating manually vetted station-
ary acoustic records, as well as capture data, this study provides updated, data-driven 
predictions of where Northern Long-eared Bats are likely to be found. False-positive 
occupancy models, which account for potential misidentifications, can be useful for im-
proving the accuracy of estimates from acoustic surveys (e.g., Rojas et al. 2019), but in a 
Bayesian framework, these models are computationally intensive. Using MLE metrics for 
acoustic surveys without manual vetting may help reduce the influence of unlikely detec-
tions, although this treatment can also result in the loss of some true detections and could 
be improved by using other sampling designs or detection models (Irvine et al. 2022, 
Specht et al. 2017). While we limited our predictions to the currently described range of 
the Northern Long-eared Bat in the contiguous United States, we note that our data inputs 
included several detection records from outside the published range (U.S. Fish and Wild-
life Service 2022a). For example, several stationary acoustic detections were reported 
from western Wyoming, which included records without manual vetting, but that did pass 
the MLE threshold for inclusion. In several other areas, Northern Long-eared Bats have 
been identified by auto ID, but without validation via captures. Further surveys of these 
areas or retrospective manual vetting could help improve the quality of data inputs for 
these types of models and our understanding of the current range of this species.
	 The covariates used in the model were statistically meaningful as predictors and bio-
logically plausible, given the ecology of this species and findings from previous occupan-
cy models based on the NABat database (Udell et al. 2022a, b). For example, the roost-
suitability metric, which was primarily driven by canopy cover, had a strong positive 
effect at both spatial scales, which is consistent with habitat use and roosting preferences 
of Northern Long-eared Bats (e.g., Broders et al. 2006, Foster and Kurta 1999, Lacki et 
al. 2009). Studies on other types of animals have used predicted habitat-suitability layers 
from presence-background models as inputs for occupancy models (e.g., da Silva Neto et 
al. 2020), although these approaches have not been frequently used for bats. Future use 
of habitat-suitability layers as occupancy modeling covariates may help expedite com-
putationally intensive modeling efforts by consolidating important predictor covariates. 
Rather than perform intensive model selection or comparison, we selected other covari-
ates a priori based on the ecology of Northern Long-eared Bats. While not incorporated 
into the roost-suitability metric, wetlands and riparian areas can provide suitable habitat 
for this species in certain areas (Foster and Kurta 1999; Gorman et al. 2022; Jordan 2020; 
Udell et al. 2022a, b). Similarly, by using a seasonal connectivity metric, our model ac-
counts for the presence of nearby hibernacula that may influence Northern Long-eared 
Bat summer distributions (Hoff et al. 2024). Expansion of model comparisons, or the 
incorporation of different sets of covariates, could yield improved predictive power. In-
deed, while our conditional AUC scores (the probability of presence at the quadrant scale, 
given presence at the grid-cell scale) were high, the unconditional scores (the probability 
of occupancy without considering latent random effects) were considered acceptable, but 
could be improved with additional data.
	 Although our model treats separate stationary acoustic surveys (i.e., any survey with 
a unique combination of location, date, project, and equipment) as separate observers, we 
did not include specific parameters to account for potential heterogeneity between observ-
ers. Factors such as equipment type—like models of acoustic detectors, microphone types, 
software versions, and the condition of recording equipment—may affect detection prob-
ability within specific years, and advancements in autoclassification technology could also 
influence detection probabilities over time. Though we did not account for these potential 
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effects, our results showed that later years generally had lower occupancy probabilities, 
which is consistent with other studies that described declining populations of Northern 
Long-eared Bats (e.g., Cheng et al. 2021; Udell et al. 2022a, b; White et al. 2022). Since our 
primary focus was estimating the recent (2017–2022) distribution of Northern Long-eared 
Bats, we do not over-interpret this declining trend. While previous work has documented 
population declines, the observed year effects in this study could be influenced by changes 
in survey effort associated with the geographic spread of white-nose syndrome. As such, 
follow-up studies, which may incorporate more nuanced parameterization of spatiotemporal 
heterogeneity in observation quality and/or observation effort (e.g., Kery et al. 2010), may 
be warranted for updating estimates on population trends of Northern Long-eared Bats. 
	 Our model (Fig. 3) predicted higher occupancy probability in areas where Northern 
Long-eared Bats have been persisting, including North Carolina (Jordan 2020), central 
Pennsylvania (Lewis et al. 2022), and some coastal regions of New England (Hoff et al. 
2024). Though some areas with high predicted occupancy probability, such as central New 
York state, were not strongly represented by available data, our results suggest that addi-
tional survey effort in these regions is warranted and could provide further ground-truthing 
for the chosen modeling approach. Our study also indicated a patch of high occupancy 
probability in northeastern Wyoming and western South Dakota, a region that includes 
Black Hills National Forest and the Bear Lodge Mountains. Northern Long-eared Bats have 
been captured in this patch and nearby locations (Alston et al. 2019, Cryan et al. 2000). 
The aforementioned patch appears somewhat isolated, which could reflect a lack of survey 
data in areas between this patch and the other parts of the species’ range with higher oc-
cupancy probability. Although some portions of the Northern Long-eared Bat range remain 
underrepresented in terms of data availability, extensive sampling efforts covered a large 
geographic scale and included a broad suite of habitat conditions in our study. While it is 
possible that unmeasured climate or landcover variables could be unique among unsampled 
grid cells, the ranges of values for the covariates included in our model did not differ sub-
stantially between sampled and unsampled grid cells where predictions were made. Our 
scope of inference was confined to the continental United States, though the distribution 
of the Northern Long-eared Bat continues northward and westward into Canada, and thus, 
additional areas of high occupancy may not be captured.
	 Occupancy modeling is not without its caveats, and like all models, the quality of model 
outputs is inherently linked to the quality of data inputs. Acoustic monitoring is imperfect, 
even for manually vetted records. Manually vetted records may be biased if, for example, 
vetters are highly conservative in downgrading auto IDs of Northern Long-eared Bat to 
“Myotis spp.” or other ambiguous classification, which may also account for the low av-
erage detection probability in this study. Similarly, auto IDs without manual vetting may 
retain false positives due to ambiguity in echolocation calls. By applying an MLE threshold, 
we attempted to reduce the potential influence of false positives. However, this data filtering 
also resulted in loss of some data that could not be processed through MLE due to a lack of 
appropriate performance tables. Future changes to the NABat database, such as allowing 
for the inclusion of automatically generated MLE scores from other classification software, 
may provide additional options for data inclusion in modeling efforts. Incorporating addi-
tional data, especially in areas with high predicted occupancy probability without existing 
surveys, could further improve the accuracy of future predictions. 
	 Ground-truthing model estimates could further validate our results, highlighting the 
utility of the NABat database and the improved ability to test model predictions following 
the incorporation of additional data. We note that our multi-scale approach correctly ac-
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counts for spatial autocorrelation at the grid-cell scale when modeling the quadrant scale. 
However, given common computational limitations in occupancy modeling, we did not 
attempt to accommodate additional autocorrelation beyond this, which, if present, could 
lead to over-precise parameter estimates, but is unlikely to result in bias. The basic as-
sumptions of occupancy modeling for mobile species (e.g., MacKenzie et al. 2006) were 
reasonable for our study design and system for the following reasons: the interpretation 
of occupancy as use of a grid-cell quadrant by at least 1 individual, the assumption of 
closure at the species level (i.e., the occupancy state as defined above does not change), 
and the short distances (with respect to grid cell quadrants) of the general within-season 
movements of the Northern Long-eared Bat. 
	 On a global scale, narrow-space foraging, low-wing aspect ratio bat species (which often 
includes species reliant on forest interior habitat) face many threats (Jones et al. 2003, Safi 
and Kerth 2004). As these bats can be difficult to capture with standard techniques (e.g., 
Tanshi et al. 2022) or challenging to detect with acoustic methods (Froidevaux et al. 2014, 
Patriquin et al. 2003), future occupancy modeling for other forest-associated species may 
require finding creative solutions for coping with low detection probabilities. Despite the 
challenges associated with predicting occupancy for rare, cryptic species, there is a need 
to quantify the distribution of these species beyond direct observations. Our analysis high-
lights the utility of centralized databases that house multiple data types, which can be used 
to improve data-driven estimates of where species are likely to occur.
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