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An Addition to the Toolkit: An Ethogram for Trichoplusia ni 

Logan Pearson1, Chloe Meewes2, Sydney Spencer1, Angela Ayala1, Brad Bailey3, 
Erin E. Barding1, Ryan Shanks1,*, and Margaret Smith1

Abstract - Animal behaviors are a consequence of complex neurobiological mechanisms and environ-
mental interactions and thus can be used to understand these processes. However, we can only study 
the diversity of animal behaviors in this way if there is a diversity of ethograms across many species. 
Therefore, we developed an ethogram for Trichoplusia ni, the Cabbage Looper, which is well studied 
in other areas but for which an ethogram did not previously exist. Additionally, we demonstrate the 
usefulness of this ethogram by manipulating a single environmental variable, the presence of another 
T. ni individual, and demonstrate that some aspects of behavior change while others do not. With the 
addition of another individual, the type and frequency of behaviors is not altered, but the location 
where organisms spend time and the distance traveled does change. Therefore, this work rigorously 
describes T. ni behaviors and uses these descriptions to establish a foundation for behavioral studies 
in this organism and in comparison to others.

Introduction

 Behavior can vary among organisms due to a combination of genetic, environmental, 
learned, social, cultural, neurological, and physiological factors (Gérard et al. 2022, London 
2017, York 2018). The complex interplay between these factors contributes to the diversity 
of behaviors observed among animals. To begin to tease apart the complexities, model or-
ganisms in a lab are useful because they can be used to study individual aspects of behavior 
in a controlled environment. However, to understand the full spectrum of animal behaviors, 
we must use a variety of models that reflect the diversity of animal life. For example, insect 
models can be particularly useful to understand the link between neurological changes and 
clearly defined behaviors (Chen and Hong 2018, Kravitz and Hernandez 2015, McClellan 
and Montgomery 2023, Steinbeck et al. 2020). 
 Trichoplusia ni (Hübner) (Cabbage Looper) (Lepidoptera: Noctuidae) has been studied 
for a variety of reasons, including its role as an agricultural pest and as part of a variety of 
host-parasite models (Burke and Strand 2014, Gordon and Strand 2009, Kang et al. 1996). 
Thus it has established research resources, including a commercially available source of 
material, basic protocols for lab culture, a sequenced genome (Chen et al. 2018), established 
cell lines (Fu et al. 2018, Maghodia et al. 2020), and well described anatomy and life history 
(McEwen and Hervey 1960, Shorey et al. 1962). However, currently, there is a paucity of 
literature describing detailed behavioral analysis of Lepidoptera in a controlled lab setting. 
 To add to the toolkit available for T. ni research, we aim to develop T. ni as a behavioral 
model. As is typical of lepidopterans, T. ni has 4 developmental stages (egg, larva, pupa 
and adult), and thus provides unique and defined developmental windows in which one can 
study behaviors. Also, they also have well-defined nervous systems that could provide a 
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model that allows mechanistic questions to be answered (Caveney and Donly 2002, Fuchs 
et al. 2014, Gallant et al. 2003, Liu et al. 2023, Malutan et al. 2002, McLean et al. 2005, 
Tang et al. 2019). Neuroscience investigations can use behavioral alterations as an end-
point measurement of change. Development of a comprehensive ethogram that captures 
the intricate behavioral range of model organisms is a key starting point for these types of 
studies. To our knowledge, T. ni has no comprehensive ethogram established. Therefore, 
this study establishes a foundational ethogram for T. ni larvae and describes its usefulness 
in a lab setting with a comparison of these behaviors in single and paired animal paradigms.  

Materials and Methods

Research population
 The research population was taken from a general population of T. ni kept in constant 
culture at 25°C with a 16:8 hr light:dark cycle. Adults were fed a 10% sucrose solution, 
and all larvae were fed ad lib on cornmeal-based artificial diet (Southland Incorporated). 
Individuals were separated from the general population in the egg stage and reared in pairs. 
After hatching, the research individuals in the population were staged every other day, and 
instar was determined based on head capsule width (McEwen and Hervey 1960). Behavior 
was observed only in larvae on the first day of their fifth instar, and only one of the pair 
reared together was used regardless of the behavioral paradigm tested. 

Behavioral arena and recording 
 To document larval behavior, a total of 20 video recordings of a single-animal paradigm 
(n = 20 individuals) and 20 videos of a paired-animal paradigm (n = 40 individuals) were 
recorded for 30 min by an HX-WA03 Panasonic camera. The behavioral arena was the 
bottom of a pipette-tip box with the dimensions 12.5 cm by 10.2 cm (Fig. 1A). The single-
animal paradigm was defined as one individual in the arena (Fig. 1B), and the paired-animal 
paradigm was defined as two individuals in the arena simultaneously (Fig. 1C). In both 
paradigms, the arena had no food included. Different larvae were recorded for each video. 
Recordings were stopped at 30 min because it was empirically determined that no new be-
haviors were exhibited after 30 min. Dark purple cardstock was placed underneath the arena 
to prevent glare as the recordings were taken inside the incubator during the light cycle. 
The camera was suspended above the arena during recording, and the distance between the 
camera and the arena was approximately 30 cm. The arena floor was sanded to roughen the 
plastic surface. The walls of the arena were not sanded, and petroleum jelly was applied 
along the top edges using a sterile cotton swab to prevent the individuals from crawling 
out of the arena. In addition, the pipette box was cleaned with ethanol between each use to 
prevent any residual cues from previous trials.    
 Depending on the behavioral paradigm being recorded, the larvae were placed in dif-
ferent areas of the arena (Fig. 1B and C). For the single-animal behavioral paradigm, the 
larva was placed in the center of the arena at the beginning of the recording (Fig. 1B). For 
the paired-animal paradigm, each larva was initially placed in opposing quadrants known as 
“native” for each animal (digitally labeled A and B in Fig. 1C and D). The quadrant of the 
opposing animal was termed “non-native” for each animal. There were also 2 other quad-
rants labeled “neutral”, where no organism was initially placed. For both the single-animal 
and paired-animal paradigm, the quadrant in which the animals spent the most time was 
referred to as the “primary” quadrant (Fig. 1B and D). 



eBio
L. Pearson et al.

2024 No. 10

3

Ethogram development  
 The examination of behavior took place once the recordings were taken, with indepen-
dent coders coding each video. Collaboratively, the coders developed a list of behaviors and 
their associated descriptions for each paradigm. This baseline ethogram was used to indepen-
dently record the frequency of each behavior exhibited in 5-min bins over 30 min. Extending 
the time beyond 30 min did not reveal additional behaviors or unique frequencies.  
 Two coders watched videos independently and named, defined, and documented behav-
iors exhibited by the individual larva (Table 1, Supplemental Data). The coders then com-
piled their list of behaviors into a master list that was used to code several more videos. To 
test the quality of the definitions, the list of behaviors was given to additional coders who 
were not directly involved in the development of the ethogram to independently identify 
behaviors. All behaviors unable to be accurately coded were redefined in the ethogram. This 
process was iterated until there was an average intraclass correlation coefficient (ICC) of 
0.89 between new coders. 

Figure 1. Behavioral arena for coding behavior for single (one animal) and paired (two animals) 
paradigms. (A) Arena dimensions for all behavioral experiments. (B) The single behavioral paradigm 
started with the larva in the center of the arena. Distance and time were measured for each quadrant 
with the primary quadrant representing the one with the greatest value for distance and time. (C) 
The paired behavioral paradigm started with the larvae (A and B) in opposing quadrants. The start-
ing quadrant for A (native) is the non-native quadrant for B and visa-versa. Quadrants where no 
larva started were considered neutral. (D) Distance and time were measured for native, non-native, 
and neutral quadrants. The primary quadrant represents the one quadrant with the greatest value for 
distance and time for each larva individually.  



 Table 1. Trichoplusia ni ethogram 

Type of 
behavior  

Behavior  Description  Visual   
aid  

Locomotion  Inchworm  Continuous movement whereby the individual’s prolegs and true legs remain 
suctioned to the surface and slide toward and away from each other while its 
body arches upward and stretches out. Additionally, any range of that arch is 
considered inchworm behavior. (See Supplemental File 1, available online at 
https://eaglehill.us/ebioonline/suppl-files/ebio-036-Shanks-s1.mp4).  

  
  

  Vertical 
movement  

Individual latches both its true legs and prolegs onto the petroleum jelly 
covered the edges of the arena.  (See Supplemental File 2, available online 
at http:https://eaglehill.us/ebioonline/suppl-files/ebio-036-Shanks-s2.mp4).    

  Still  Individual exhibits no movement; it is still for at least 5s.  (See supplemental 
File 3, available online at https://eaglehill.us/ebioonline/suppl-files/ebio-
036-Shanks-s3.mp4).    

Elimination  Frass  Excretion of feces while the individual is in the arena; larval frass is circular 
and light brown in color. If the individual releases 1 pellet, record that as 1 
frass behavior.  (See Supplemental File 4, available online at https://eagle-
hill.us/ebioonline/suppl-files/ebio-036-Shanks-s4.mp4).  

  

  Emesis  Individual expels fluid from mouth; larval vomit is a green fluid-like 
substance. (See Supplemental File 5, available online at https://eaglehill.us/
ebioonline/suppl-files/ebio-036-Shanks-s5.mp4).    

Non-
Locomotion  

Head move-
ment  

Individual’s prolegs and true legs remain attached to the surface of the arena 
while only its head moves (the area from the tip of its head to the area right 
before its true legs).  (See Supplemental File 6, available online at https://
eaglehill.us/ebioonline/suppl-files/ebio-036-Shanks-s6.mp4).  

  
  Upward 

extension  
The individual’s prolegs are suctioned to the surface of the arena and it 
brings its anterior body upward where it holds a still position as seen in the 
picture. Individual remains still in this position for longer than 1 second.  
(See Supplemental File 7, available online at https://eaglehill.us/ebioonline/
suppl-files/ebio-036-Shanks-s7.mp4).  

  

  Searching  Individual’s prolegs suction to the ground while its thorax extends upward 
and moves from one direction to another (can move L-R or R-L); during 
this movement, the individual’s true legs are not attached to the surface of 
the arena.  (See Supplemental File 8, available online at https://eaglehill.us/
ebioonline/suppl-files/ebio-036-Shanks-s8.mp4).  

  
Engagement  Wall 

engagement  
An individual engages with the walls of the arena by latching its true legs 
onto the petroleum jelly covered surface and maintaining its proleg grip on 
the bottom surface of the arena.  (See Supplemental File 9, available online 
at https://eaglehill.us/ebioonline/suppl-files/ebio-036-Shanks-s9.mp4).  

  

  Body 
engagement  

Individuals engage with its body by keeping prolegs on the surface and 
bringing head and true legs backwards/forwards to a part of its body.  (See 
Supplemental File 10, available online at https://eaglehill.us/ebioonline/
suppl-files/ebio-036-Shanks-s10.mp4).  

  

  Frass 
interaction  

Individuals interact with their frass by nudging their frass with their head.  
(See Supplemental File 11, available online at https://eaglehill.us/ebioon-
line/suppl-files/ebio-036-Shanks-s11.mp4).    

Sociability  1-Sided 
interaction  

Any part of individual A or B contacts any body part of individual A or B.  
(See Supplemental File 12, available online at https://eaglehill.us/ebioon-
line/suppl-files/ebio-036-Shanks-s12.mp4).    

  2-Sided 
interaction  

Individual A or B physically contacts the other individual and this elicits a 
response whereby the other individual uses its head to push A or B away 
from itself.  (See Supplemental File 13, available online at https://eaglehill.
us/ebioonline/suppl-files/ebio-036-Shanks-s13.mp4). 
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Behavioral coding 
 Once the ethogram was established with strong inter-relater reliability, new coders 
analyzed 30-min recordings of the individual and paired behavioral paradigms. They were 
provided with the established ethogram, to which they had not been previously exposed. 
The coders then tallied each time a behavior was displayed according to the terms and defi-
nitions they were given. All behaviors were coded in 5-min bins.   

Time and locomotion
 To further understand the locomotion patterns of the larvae studied in both paradigms, 
the arena was divided into quadrants (Fig. 1). The time spent and total distance traveled in 
each quadrant were measured. The locomotion distance was measured with a ruler by trac-
ing the movement of the individual using a sheet of transparency paper, and the amount of 
time spent in each quadrant was tracked for each 5-min bin (Fig. 1B and D).  

Data analysis
 For tallies of individual behaviors, high-occurrence behaviors were defined as those 
exhibited 10 or more times in a 30-min recording. Low occurrence behaviors were defined 
as those exhibited less than 10 times in a 30-min recording. Independent sample t-tests were 
performed to determine if the frequency of high-occurrence behaviors differed between sin-
gle-animal and paired-animal paradigms. Similarly, time and distance traveled in different 
quadrants, and frequency of one-sided vs two-sided interactions were analyzed with t-tests. 
Duration of time spent in the primary quadrant across time intervals and paired paradigms 
were analyzed with ANOVA. Statistical analyses were done in R (v. 4.2.2) and SPSS (v. 
29.0). In all graphs, error bars represent the standard error (SE).

Results

Ethogram
 To develop this ethogram for T. ni, we collected behavioral data from 20 single-animal 
videos and 20 paired-animal videos. We only recorded the larvae in the first day of the fifth 
instar for consistency and visual purposes (Table 1, Supplemental Data).

Figure 2. Coded larval behaviors defined in the ethogram measured over 30 minutes for both the single 
(dark columns) and paired (light columns) behavioral paradigms. (A) High-occurrence behaviors (B) 
Low-occurrence behaviors. Error bars represent ± standard error (SE).



eBio
L. Pearson et al.

2024 No. 10

6

Behavior 
 Using the ethogram, coders tallied behaviors exhibited during 30-min recordings. We 
were able to distinguish the high-occurrence behaviors (Fig. 2A) from low-occurrence be-
haviors (Fig. 2B). There was no statistical difference in the frequency of high-occurrence 
behaviors between single-animal and paired-animal paradigms (inchworm: t58  = 0.02, P = 
0.98; searching: t58 =  0.98, P = 0.33; wall engagement: t58  = 1.70, P = 0.09). The scarcity 
of low-occurrence behaviors did not warrant statistical analysis of single-animal and paired 
animal paradigms (Fig. 2B).

Figure 3. Coded larval average time (A and B) and average distance traveled (C and D) in 30 minutes 
for both the single (dark columns) and paired (light columns) behavioral paradigms. * indicates P < 
0.001. Error bars represent ± SE.

Figure 4. Average time spent in the primary quadrant for larvae in both the single (dark triangle and 
solid linear trend line) and paired behavioral paradigms (light triangles and dashed linear trend line) 
shown in 5-minute time intervals for the 30-minute coding period. Error bars represent ± SE.
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Time and distance
 Time and distance traveled in different quadrants was measured for both single-animal 
and paired-animal paradigms. The single-animal paradigm revealed more time spent in 1 
quadrant compared to the other 3 quadrants (Fig. 3A, t38 = 6.8, P < 0.001). The paired-ani-
mal paradigm also showed that there was an effect of quadrant on time spent in the quadrant 
(Fig. 3B, F(2,117) = 11.26, P < 0.001). A post-hoc Tukey’s test indicated that individuals spent 
less time in the non-native (P < 0.001) quadrant than either the native or neutral quadrants.
 There was no statistical difference in the total distance traveled by individuals in the 
single-animal paradigm versus paired-animal paradigm (Fig. 3C, t58 = 0.89, P = 0.37). In 
contrast, for the paired-animal paradigm, (Fig. 3D), there was a significant difference in 
the average distance traveled in different quadrants (F(2,117) = 12.23, P < 0.001). A post-hoc 
Tukey’s test indicated that individuals spent significantly more time in neutral quadrants 
than either their native quadrant (P < 0.001) or non-native quadrant (P < 0.001). This in-
crease is attributed to the fact there is twice as much space in the neutral quadrants, yet 
remains notable given the decreased time spent in the non-native quadrant only. 

Time interval vs duration in primary quadrant
 The duration of time spent in the primary quadrant across time intervals was also exam-
ined (Fig. 4). For the single-animal paradigm, there was no significant difference between 
the 5-min time intervals and time spent in a primary quadrant versus other quadrants as 
indicated by a regression line slope not statistically significantly distinguishable from 0 (F(5) 
= 0.921, P = 0.339). In contrast, for the paired-animal paradigm, individuals decreased the 
amount of time they spent in their primary quadrant over time as indicated by a statistically 
significant negative slope of the regression line (F(5) = 5.81, P = 0.017).

Interactions
 Lastly, 2 novel behaviors (one-sided interactions and two-sided interactions) occurred 
only in the paired-animal paradigm recordings (Table 1, Fig. 5). One-sided interactions were 
significantly more frequent than two-sided interactions (t78 = 2.77, P = 0.007).

Figure 5. One-sided and two-
sided interactions measured be-
tween larvae in the paired-ani-
mal paradigm over 30 minutes.  
* indicates P < 0.05. Error bars 
represent ± SE.
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Discussion

Ethogram
 Establishing a well-defined ethogram is fundamental to understanding animal behavior 
(Okuyama et al. 2013). With clear operational definitions, this ethogram was created to 
give other researchers the opportunity to use a straightforward system to answer additional 
questions (Xu et al. 2012). In addition to these behaviors, methodology for how to track and 
time the movement of animals within a defined arena provide a template for future studies 
(Fig. 1, Table 1, Supplemental Data). Whilst many researchers have investigated specific 
behaviors of interest, a more inclusive description of behaviors allows for a more integra-
tive and cross-disciplinary approach (Collie et al. 2020, McLellan and Montgomery 2023, 
Okuyama et al. 2013, Peric-Mataruga et al. 2017, Suszczynska et al. 2017).

Behavior
 To illustrate the application of the operational definitions in the ethogram, the behaviors 
were coded with the addition of a single variable that compares a single larva’s behaviors 
alone and with an additional larva. High occurrence behaviors show no statistical differ-
ence with this single environmental variable we exampled (single vs. paired), yet this may 
provide an interesting comparison to the effect of different environmental variables such 
as food availability and temperature (Fig. 2A). Similarly, while low frequency behaviors 
hold no validity statistically due to the low number of coded events, there were trending 
differences that may hold biological meaning (Fig. 2B). Therefore, the importance of these 
recorded events lies beyond any statistical findings. This ethogram and the example data 
analysis clearly defined all possible behaviors so that future studies may alter environmen-
tal, social, or developmental variables or compare behaviors between species in a more 
wholistic approach. For example, the upward extension of the head provided little measur-
able difference between coded behaviors within either the single or paired behavioral para-
digms, yet this behavior may be drastically altered if food were introduced into a competi-
tive environment in which two animals shared the arena. However, for the ability to conduct 
future comparative and meta-analysis, it will be important that all behaviors regardless of 
their statistical significance be documented.

Location and distance
 As with behavior, measures of location and distance traveled provide an important 
measurement of neurobiobehavioral alterations. This can be used to measure responses 
to the introduction or removal of environmental cues and gauge whether they are appeti-
tive or non-appetitive. Individuals in both the single and paired behavioral paradigms had 
unique location and distance patterns of behavior. These patterns of behavior provide a 
unique baseline data set to investigate alterations in these behaviors including investiga-
tions of motivation, competition, and social interactions. For example, the addition of 
frass or a potential food source in one area of the arena may alter the primary quadrant 
for an individual in a single behavioral paradigm. In a paired behavioral paradigm these 
additions may alter the duration that individuals display in a primary quadrant over time 
(Fig. 4). Interestingly, the presence of an additional organism did not impact the distance 
traveled by individuals, yet individuals in both the single and paired behavioral paradigms 
did have unique location and locomotion patterns (Fig. 3). Individuals in the paired be-
havioral paradigm did not travel longer distances in their native quadrant; however, they 
spent more time in the native quadrant (Fig. 3). The added individual B in the paired para-
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digm could  help explain why individual A spent more time in the native quadrant whilst at 
the same time traveled less in said quadrant (Fig. 1 and 4). Therefore, it is the combination 
of both time spent and distance traveled together that is important to consider. Addition-
ally, by binning the duration spent in specific quadrants, unique trends were observed in 
the individuals of the single and paired behavioral paradigms (Fig. 4). Manipulation of 
this simple variable (paired vs. single) alters behavior in some measurable and meaningful 
ways (location, Fig. 3) yet has little effect on other behaviors (high-occurrence, Fig. 2). 
This highlights the usefulness of establishing an ethogram using a controlled laboratory 
environment in which an arena of a defined size is used. 

Interaction
 Individuals in the paired-animal paradigm exhibited seemingly aggressive one-sided 
and two-sided interactions. This is not unusual, even to the point of cannibalism, in both 
eusocial and solitary insects where its function is used to defend territories, establish 
social hierarchies, and compete for food (Bowen et al. 2008, Collie et al. 2020, Dial and 
Adler, 1990, Kemp 2000, Semlitsch and West 1988, Tang et al. 2016, Yack et al. 2001, Za-
go-Braga and Zucoloto 2004, Zhou et al. 2016). While T. ni is not a eusocial insect, it can 
live in groups, like other lepidopterans, and this may impact behavior (Daly et al. 2012). 
Figure 5 documents significantly more occurrences of one-sided interactions compared to 
two-sided interactions in the paired-animal behavioral paradigm. The role these interac-
tions have in the establishment of a potential social hierarchy in T. ni remains unclear, but 
this foundational data opens the door to investigations of how size, developmental stage, 
and fitness relate to the establishment of potential dominant and submissive individuals 
in a population. Furthermore, these investigations relate to more broad questions of how 
social interactions lead to the evolution of important survival behaviors in a group setting. 
  The combined study of interactions and other behaviors in this ethogram serves as a 
valuable tool for researchers to further investigate the ecological, physiological, and be-
havioral aspects of T. ni, aiding in the understanding of its biology and ecology. It could 
open the door to investigations of more broad behavioral notions such as learned help-
lessness, usually studied in vertebrate models (Maier and Seligman 2017), or other cued 
social interactions that usually depend on multiple sensory inputs in insects as well as 
the underlying neural mechanisms dictating these behaviors (Chen and Hong 2018). The 
analysis of behavioral data in this ethogram can be used as a reference of a standard so-
cial interaction amongst T.ni and instigate the study of the underlying neural mechanisms 
causing these interactions to occur. Understanding the neural basis of T. ni behavior can 
shed light on the neural circuits, sensory processing, and neurophysiological processes 
involved in not only insect but more complex animal behavior. This research provides a 
foundation for future studies on T. ni and other lepidopteran species, with the potential to 
uncover novel insights into the neural mechanisms underlying insect behavior and inspire 
future research in neuroethology.
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