nena masthead
NENA Home Staff & Editors For Readers For Authors

Exploring Environmental Drivers of Growth for Tree Species Associated with a Rare Limestone Bluff Cedar–Pine Forest in Vermont

Paul G. Schaberg1,*, Paula F. Murakami2, Christopher F. Hansen3, and Rebecca L. Stern4

1Forest Service, US Department of Agriculture, Northern Research Station, Burlington, VT 05405. 2Forest Service, US Department of Agriculture, Northern Research Station, South Burlington, VT 05403. 3The University of Vermont, Rubenstein School of Environment and Natural Resources, South Burlington, VT 05405. 4Environmental Resources Management, Malvern, PA 19355. *Corresponding author.

Northeastern Naturalist, Volume 30, Issue 2 (2023): 244–268

Abstract
The limestone bluff cedar–pine forest is a rare upland natural community that is threatened by development and invasion by exotic species. Furthermore, the sensitivity of this forest-type to changes in climate and pollution exposure is unknown. We collected xylem increment cores from 4 conifer species (Thuja occidentalis [Northern White Cedar], Juniperus virginiana [Eastern Red Cedar], Pinus strobus [Eastern White Pine], and Tsuga canadensis [Eastern Hemlock]) and 4 hardwood species (Quercus rubrum [Northern Red Oak], Quercus alba [White Oak], Fagus grandifolia [American Beech], and Fraxinus americana [White Ash]) within and close to a cedar–pine forest along the eastern shore of Lake Champlain in Vermont and correlated radial tree growth to precipitation, snow, temperature, and pollution data to assess which factors influenced growth during the time period 1937–2016. We examined growth and possible environmental drivers of it for a variety of species to evaluate how unique these may be for the cedar and pine trees emblematic of the limestone-bluff community. For both conifers and hardwoods, precipitation exhibited the strongest positive correlations with growth and occurred with greater frequency compared to other climate and pollution parameters. Snow was positively associated and temperature was negatively associated with growth for all species. Despite growing over calcium-rich bedrock, and especially for the conifers, pollution seemed to limit growth in years prior to pollution reductions enacted following the 1990 Amendments to the Clean Air Act.

pdf iconDownload Full-text pdf (Accessible only to subscribers. To subscribe click here.)

 

 



Access Journal Content

Open access browsing of table of contents and abstract pages. Full text pdfs available for download for subscribers.

Issue-in-Progress: Vol. 31 3) ... early view

Current Issue: Vol. 31(2)
NENA 31(1)

Check out NENA's latest monograph and the current Special Issue In Progress:

Monograph 24
NENA monograph 24

Special Issue 12
NENA special issue 12

All Regular Issues

Monographs

Special Issues

 

submit

 

subscribe

 

JSTOR logoClarivate logoWeb of science logoBioOne logo EbscoHOST logoProQuest logo